Автор работы: Пользователь скрыл имя, 23 Апреля 2012 в 21:39, контрольная работа
Поляриметрия широко применяется для исследования строения оптически активных веществ и измерения их концентрации. Оптическая активность - эффект второго порядка, получаемый при учёте различия фаз световой волны в разных точках молекулы, который возникает в результате электронных взаимодействий в молекуле.
Введение………………………………………………………
1. Поляризация света и связанные с ней явления…………………...
1.1 Поляризация света……………………………………………………...
1.2 Хроматическая поляризация света……………………………………
1.3 Двойное лучепреломление…………………………………………….
1.4 Оптическая активность вещества……………………………………..
2. Поляризационные устройства и приборы………………………….
2.1 Простейшие поляризационные устройства…………………………..
2.2 Поляризационные призмы……………………………………………..
2.3 Приборы для поляризационно-оптических исследований…………..
Заключение…………………………………………………………….
Список использованных источников………………………………
Поляризационные приборы
служат для обнаружения и
Чрезвычайно существенную роль в химических и биофизических исследованиях играет обширный класс приборов, служащий для измерения вращения плоскости поляризации в средах с естественной или наведённой магнитным полем оптической активностью (поляриметры) и дисперсии этого вращения (спектрополяриметры). Относительно простыми, но практически очень важными являются сахариметры - приборы для измерения содержания сахаров и некоторых других оптически активных веществ в растворах.
Самые точные из полярископов позволяют обнаружить примесь поляризованного света к естественному, составляющую доли процента.
В качестве примера рассмотрим один из простейших круговых поляриметров - поляриметр СМ-3, который предназначен для определения угла поворота плоскости поляризации в жидких оптически активных веществах .
Осветитель 1 (лампа накаливания
или натриевая лампа ДНаО140) устанавливается
в фокальной плоскости
Достаточно просто устроен полярископ-поляриметр ПКС-56 (рисунок 2.10). Он состоит из источника света 1 (лампа накаливания), матового стекла 2, поляризатора 3 (поляроид, вклеенный между стеклами), четвертьволновой пластинки 5, анализатора 6 и светофильтра 7 (максимум пропускания при 0.54 мкм). Порядок измерения на приборе следующий: скрещивают поляризатор и анализатор (отсчет по лимбу анализатора 0°, поле зрения темное); устанавливают образец 4 (если он обладает двойным лучепреломлением, то в поле зрения наблюдается просветление); поворачивают анализатор до максимального потемнения в середине образца; по лимбу отсчитывают угол поворота Db анализатора.
Несколько более сложную схему имеет малогабаритный поляриметр ИГ-86 (, предназначенный для визуального исследования напряженного состояния изделий с помощью оптически чувствительных покрытий. Он позволяет наблюдать интерференционную картину в условиях плоской и круговой поляризации и измерять оптическую разность хода как методом сопоставления цветов, так и компенсационным методом.
Источник света 1 (лампа СЦ-61) размещен в фокусе объектива 3. Защитные стекла 2, 7 и 12 предохраняют прибор от попадания в него загрязнений. Параллельный пучок лучей проходит поляризационный светофильтр (поляризатор 4), полупрозрачное зеркало 8 и, отразившись от светоделительного слоя, падает на оптически чувствительное покрытие 6, нанесенное на исследуемый объект 5. После отражения от покрытия свет попадает в анализаторный узел прибора, проходит компенсатор 9, анализатор 10 и попадает в зрительную трубу (сменное увеличение 2 и 10´) со шкалой в совмещенной фокальной плоскости объектива 11 и окуляра 13. Перед глазной линзой окуляра и выходным зрачком 15 устанавливается светофильтр 14. Такая оптическая схема получила наименование Т-образной схемы. Предел измерения оптической разности хода - от 0 до 5 интерференционных порядков. Погрешность измерения - 0.05 интерференционных порядков.
Лучистый поток источника
света 1 сверхвысокого давления проходит
через иитерференционный
Заключение
Поляриметрия широко применяется для исследования оптически активных веществ. Методами поляриметрии анализируются атмосфера и океаны, различные объекты окружающей среды, промышленные изделия и продукты переработки предприятий. Эффективно эти методы используется в электронной промышленности, в медицине, биологии, криминалистике и т.д. Большое значение они имеют в аналитическом контроле окружающей среды и решении экологических проблем. Методы поляриметрии методы рассматриваются в ряде предметов специальности “Физика”, например, в курсах “Оптические измерения” и “Строение и методы исследования вещества”.
В то же время имеется ряд особенностей исследования оптической активности химических соединений, что связано с неаддитивностью явления, не позволяющей вести расчёты на основе простой схемы, как, например, в случае молекулярной рефракции. Перспективными здесь являются методы поляриметрии, основанные на измерении поляризационных свойств прошедшего через тестируемое вещество квазимонохроматического излучения различных спектральных диапазонов.
В данной дипломной работе рассмотрены основные характеристики поляризованного излучения, методы поляриметрии и типовое оборудование. Разработаны методические указания к выполнению лабораторной работы “Поляриметрическое определение концентрации вещества в растворе. Проверка закона Био при разных длинах волн”.
С целью расширения функциональных
возможностей промышленного поляриметра
СМ-3 проведена его модификация, заключавшаяся
в замене исходной системы освещения
блоком, позволяющим проводить
Вопросы для контроля
1. Что такое поляризация
света, ее виды и
2. Какие способы получения
поляризованного света
3. Объясните принцип
4. Каков механизм поворота
поляризации в оптически
5. Дайте определение лучевой и нормальной скоростей для анизотропного кристалла.