Оптика и строение атома. Элементы физики атома

Автор работы: Пользователь скрыл имя, 09 Декабря 2014 в 19:20, контрольная работа

Краткое описание

Эксперименты показывают, что при нагревании различных чистых веществ (см. таблицу Менделеева), вещества испускают электромагнитное излучение различных частот или длин волн. Набор излучаемых частот или длин волн (частоты и длины волн связаны через скорость света в вакууме соотношением ν = c/λ ) называют спектром излучения. Для каждого вещества он оказался спецефичным и по нему можно определять тип чистого вещества и его наличие в смесях различных веществ. Этот метод изучения строения вещества называется оптическим спектральным анализом.

Прикрепленные файлы: 1 файл

LR316.doc

— 2.18 Мб (Скачать документ)

                                                     (6)

Это - уравнение Шредингера для, так называемых, стационарных состояний, находясь в которых частица имеет определенные, не меняющиеся со временем  характеристики.

 

 

3.3. Атом водорода в квантовой механике. Квантовые числа и их физический смысл.

 

Квантово-механическая теория атома, построенная на уравнении Шредингера, гораздо совершеннее полу-классичекой теории атома Бора, построенной на ряде постулатов. Она сохраняет некоторые аспекты старой теории – например, электроны могут находиться в атоме только в состояниях с определенной дискретной энергией; при переходе электрона из одного состояния в другое испускается (или поглощается) фотон. Но квантовая механика не просто дополняет теорию Бора, она рисует совершенно иную картину строения атома. Согласно квантовой механике, не существует определенных круговых орбит у электронов, как в теории Бора. В силу волновой природы электрон «размазан» в пространстве, т.е. может с определенной вероятностью находится в любой точке пространства.

При рассмотрении атома водорода, движение его единственного электрона можно рассматривать как движение в электрическом поле ядра. По аналогии с задачей о движении частицы в потенциальной яме простой формы, здесь необходимо найти решения стационарного уравнения Шредингера в трехмерном пространстве с конкретным видом потенциальной энергии, описывающем его электростатическое взаимодействие с ядром

  .                                                                            (7)

При решении уравнения Шредингера в данном случае используют специальные функции математической физики - сферические функции и сферическую систему координат, центр которой совпадает с центром ядра атома. Если записать уравнение Шредингера в сферических координатах (r, a, q), то его можно строго аналитически решить, это решение представляют в виде произведения трех функций    .

Важной особенностью решения является его зависимость от трех чисел n, l, m, называемых квантовыми числами. В квантовой механике каждому решению соответствует определенное состояние атома со своим распределением электрона вокруг ядра, которое задается соответствующей волновой функцией, зависящей от трех квантовых чисел: n, l, m.

Квантовое число n называется главным квантовым числом, от него зависит значение полной энергии атома водорода, при этом атом может иметь не любые значения энергии Е, а лишь некоторые Еn. Квантовое число n может принимать следующий ряд значений n = 1,  2, 3, … ¥. Значения энергии Еn, которые может иметь атом, называют разрешенными значениями энергии атома, а их совокупность Е1, Е2, … Е¥  представляет собой энергетический спектр атома.  Разрешенные значения энергии обычно изображаются в виде горизонтальных линий, называемых энергетическими уровнями. Для атома водорода квантовая механика предсказывает точно такие же энергетические уровни, что и теория Бора, т.е.

                             .                                                      (8)

Состояние атома с наименьшей энергией называется основным (n = 1), все остальные состояния – возбужденными (см. рис.2).

                                                          

 

                            Рис.2. Схема энергетических уровней атома водорода.

 

Орбитальное квантовое число l связано с моментом импульса орбитального движения электрона вокруг ядра. Так как электрон имеет электрический заряд, то его движение вокруг ядра приводит к появлению магнитного момента, аналогичного магнитному моменту кругового витка с током. Орбитальное квантовое число l может принимать целочисленные значения от 0 до n -1, оно квантует величину момента импульса L и магнитного момента m согласно соотношениям

 

,                                        (9) 

где mБ - постоянная, служащая единицей измерения магнитных моментов атомов и называемая магнетоном Бора. Сравнивая формулу квантования момента импульса с формулой квантования в теории Бора, можно заметить, что они не совпадают. Более того, при l=0, в квантовой механике возможны состояния атома с нулевым моментом импульса электрона. Опыт подтверждает существование квантовых состояний атома с нулевыми орбитальными моментами, хотя при классическом описании движения электрона в атоме по определенной орбите атом должен всегда обладать ненулевым моментом импульса.

Магнитное квантовое число m характеризует ориентацию момента импульса L  и магнитного момента m во внешнем силовом поле (например, магнитном или электрическом) и может принимать целочисленные значения от – l до + l . Согласно классической теории магнитный момент всегда стремится повернуться вдоль направления магнитного поля. В квантовой механике движение электрона таково, что магнитный момент  может быть направлен в нескольких, строго определенных направлениях в зависимости от состояния атома, то есть он квантуется не только по величине, но и по направлению. Такое пространственное квантование приводит к тому, что проекции момента импульса и магнитного момента электрона на выделенное в пространстве направление  могут иметь только строго определенные значения. Ориентацию магнитного момента и момента импульса задают как и в классической физике, указывая его компоненту вдоль оси z, совпадающей с направлением магнитного поля. В квантовой механике возможные проекции Lz и mz определяются магнитным квантовым числом m с помощью соотношений

                                                  (10)

 

Так как формула квантования проекции механического момента соответствует вполне определенным направлениям ориентации в пространстве векторов L и m, то эту формулу называют обычно формулой пространственного квантования. С точки зрения классического представления об электронной орбите, эта формула определяет возможные дискретные расположения электронных орбит в пространстве по отношению к направлению внешнего поля. По отношению к другим координатам x и y положение векторов момента импульса L  и магнитного момента m меняется так, как если бы они вращались вокруг  оси z. Такое вращение называется прецессией (см. Рис. 3).

 

                                                                                            

Рис. 3.  Пространственное квантование момента импульса для состояния l =1 и траектории прецессии.

 

Пространственное квантование было продемонстрировано экспериментами с атомными пучками, выполненным О.Штерном и В.Герлахом в 1922 г. Для атома водорода пространственное квантование орбитального магнитного момента описывается формулой (10). Для более сложных многоэлектронных атомов эта формула несколько видоизменяется, однако и для таких атомов остается в силе основной вывод квантовой теории: проекция магнитного момента атома на направление внешнего магнитного поля может иметь только дискретные квантовые значения.

В опыте Штерна и Герлаха пространственное квантование для атомных систем демонстрируется следующим образом. Путем испарения в вакуумной печи серебра или другого металла получают газ, состоящий из возбужденных атомов. С помощью тонких щелей формируется узкий атомный пучок (рис.4), который пропускается через неоднородное магнитное поле с большим градиентом магнитной индукции ¶B/¶z. Для создания такого магнитного поля используется магнит с ножевидным полюсным наконечником, вблизи которого на достаточно малом расстоянии пропускается атомный пучок.  На атомы, пролетающие в зазоре магнита, вдоль направления магнитного поля действует сила Fz = mz¶B/¶z, обусловленная градиентом индукции неоднородного магнитного поля и зависящая от величины проекции магнитного момента атома на направление поля. Эта сила отклоняет движущийся атом в направлении оси z, причем за время пролета магнита движущийся атом отклоняется тем больше, чем больше величина проекции mz .

 

 

                                                  

 

 

Рис.4. Схема опыта Штерна и Герлаха (А-источник атомов, Щ-щели для формирования узкого пучка, S, N-полюса магнита, С- стеклянная пластинка для оседания атомов).

 

 С позиций классической  физики, магнитные моменты атомов  вследствие их хаотичного теплового движения, при влете в магнитное поле могут иметь любое направление в пространстве. Это должно приводить к возможности различных отклонений атомов. В результате, атомы серебра, быстро пролетевшие через магнитное поле, должны были образовывать непрерывную зеркальную полосу в местах оседания на стеклянной пластинке. Если же, как предсказывает квантовая теория, имеет место пространственное квантование, и проекция магнитного момента  атома принимает только определенные дискретные значения, то под действием силы Fz атомный пучок должен расщепиться на дискретное число пучков, которые, оседая на стеклянной пластинке, дают серию узких дискретных зеркальных полос, куда попадают атомы. Именно этот результат наблюдался в эксперименте. Таким образом, опыт Штерна и Герлаха подтвердил правильность выводов квантовой теории о наличии пространственного квантования магнитных моментов и моментов импульса атомов.

Графически вероятность нахождения электрона можно изобразить в виде облака, где более темные области соответствуют большей вероятности нахождения. «Размеры» и «форму» электронного облака в заданном состоянии атома можно вычислить. Для основного состояния атома водорода решение уравнения Шредингера дает

 

                                 ,                                                               (11)

 

где φ(r) – волновая функция, зависящая только от расстояния r до центра атома, r1 – постоянная, совпадающая с радиусом первой Боровской орбиты. Следовательно, электронное облако в основном состоянии водорода сферически-симметрично, как показано на рисунке 5. Электронное облако только приблизительно характеризует размеры атома и движение электрона, так как вероятность обнаружения электрона не равна нулю для любой точки пространства. На рисунке 6 изображены электронные облака атома водорода в состояниях: n=2, l=1 и m=1, 0, -1 при наличии магнитного поля.

 

 

            Рис. 5. Электронное облако атома водорода в основном состоянии n =1, l = 0.

            

             Рис. 6. Электронные облака атома водорода и прецессия моментов импульса в состояниях  n = 2,  l = 1 для m = 1, 0, -1

 

Если в этих состояниях определить наиболее вероятные расстояния электрона от ядра, то они будут  равны радиусам соответствующих  Боровских орбит. Таким образом, хотя квантовая механика не использует представление о движении электрона по определенным траекториям, тем не менее, радиусам Боровских орбит и в этой теории можно придать определенный физический смысл.

Из квантовой теории следует, что вследствие симметрии электронного облака механический и магнитный моменты атома, находящегося в основном, невозбужденном состоянии, равны нулю. Следовательно, если в опыте Штерна - Герлаха обеспечить условия, при которых в атомном пучке будут двигаться невозбужденные атомы, то такой атомный пучок не должен расщепляться магнитным полем. Однако эксперимент не подтвердил такой вывод квантовой теории. Пучок невозбужденных атомов серебра расщепился на два пучка, которые создали две узкие зеркальные полоски, сдвинутые симметрично вверх и вниз.

Для объяснения этого и ряда подобных явлений в 1925 г. С.Гаудсмит и Дж.Уленбек  выдвинули смелую теорию о том, что сам электрон является носителем собственных механического и магнитного моментов, не связанных с движением электрона в пространстве. Эта гипотеза получила название гипотезы о спине электрона. Такое название связано с английским словом spin, которое переводится как кружение, верчение. Согласно выдвинутой теории, электрон обладает собственным моментом импульса Ls, который получил название спина, и собственным магнитным моментом . Спин электрона Ls не квантуется по величине, но квантуется его проекция на направление магнитного поля Lsz согласно формуле

  ,                                                                (12)

спиновое квантовое число s  может принимать только два значения s = +1/2 и s = -1/2, то есть у самого электрона во внешнем поле возможны два направления спина.

Первоначально предполагалось, что спин обусловлен вращением электрона вокруг своей оси. Однако такая модель вращающегося заряженного шарика оказалась несостоятельной, так как расчет показал, что ни при каких допустимых  скоростях вращения нельзя индуцировать магнитный момент, равный по величине собственному магнитному моменту электрона. Спин электрона не имеет классического аналога. Он характеризует внутреннее свойство квантовой частицы, связанное с наличием у нее некоторой дополнительной степени свободы движения. Количественная характеристика этой степени свободы - спин  является для электрона такой же величиной как, например, его масса  и заряд.

Наличие спина электрона и возможность его пространственного квантования во внешнем поле позволило объяснить эффекты, которые наблюдались при изучении тонкой структуры оптических спектров ряда атомов. Например, тщательное исследование спектральных линий водорода в магнитном поле показало, что каждая линия состоит из двух  близких линий. Это явление получило название тонкой структуры, оно объясняется возможностью двойной ориентации спина.

В 1928 г. П. Дирак обобщил квантовую теорию на случай релятивистского движения частиц. Это уравнение значительно сложнее уравнения Шредингера по своей структуре, но из уравнения Дирака спиновое квантовое число получается так же естественно, как и три квантовых числа при решении уравнения Шредингера. Можно упрощенно сказать, что собственные механический и магнитный моменты у электрона появляются как следствие учета релятивистских эффектов в квантовой теории. Отметим также, что не только электрон, но и многие другие элементарные частицы, в том числе и не заряженные,  обладают спином.

Информация о работе Оптика и строение атома. Элементы физики атома