Автор работы: Пользователь скрыл имя, 03 Сентября 2013 в 14:23, реферат
Двадцать первый век - век атома, покорения космоса, радиоэлектроники и ультразвука. Наука об ультразвуке сравнительно молодая. Первые лабораторные работы по исследованию ультразвука были проведены великим русским ученым-физиком П. Н. Лебедевым в конце XIX, а затем ультразвуком занимались многие видные ученые.
Ультразвук представляет собой волнообразно распространяющееся колебательное движение частиц среды. Ультразвук имеет некоторые особенности по сравнению со звуками слышимого диапазона. В ультразвуковом диапазоне сравнительно легко получить направленное излучение; он хорошо поддается фокусировке, в результате чего повышается интенсивность ультразвуковых колебаний. При распространении в газах, жидкостях и твердых телах ультразвук порождает интересные явления, многие из которых нашли практическое применение в различных областях науки и техники.
Введение 3
1. Классификация акустических методов контроля 3
2. Эхо-импульсный метод ультразвуковой дефектоскопии. 5
2.1 Характеристики 5
2.2 Условия выявления дефектов при эхо-импульсном методе 6
2.3 Условия получения максимального сигнала от дефекта 7
2.4 Виды помех, появляющихся при эхо-методе 7
2.5 Разрешающая способность эхо-метода 8
2.6 Определение образа выявленного дефекта. 9
3. Ультразвуковой эхо-импульсный дефектоскоп 10
4. Рельсовый дефектоскоп УДС2-73 - три прибора в одном 11
5. Фирмы, занимающиеся акустическими методами контроля: 15
5.1 ABATA Aussenhandels GmbH (Ауссенхандельс ГмбХ) 15
5.2 Фирма "Impuls-Crivencov" 16
Заключение 17
Список использованных источников 17
Министерство общего и профессионального образования РФ
ГОУ ВПО «УГТУ-УПИ»
Кафедра ФМПК
Оценка реферата
Члены комиссии
РЕФЕРАТ
ультразвуковой контроль
ОБОРУДОВАНИЕ И ТЕХОЛОГИЯ ЭХО-ИМПУЛЬСНОГО МЕТОДА УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ
Руководитель к.т.н., доц. |
__________, ______ |
Зацепин А.Ф. |
Консультант ученый секретарь |
__________, ______ |
Рогович С.В. |
Студент Группа Фт-14061 |
__________, ______ |
Невьянцев С.В. |
Екатеринбург 2004
Двадцать первый век - век атома, покорения космоса, радиоэлектроники и ультразвука. Наука об ультразвуке сравнительно молодая. Первые лабораторные работы по исследованию ультразвука были проведены великим русским ученым-физиком П. Н. Лебедевым в конце XIX, а затем ультразвуком занимались многие видные ученые.
Ультразвук представляет собой волнообразно распространяющееся колебательное движение частиц среды. Ультразвук имеет некоторые особенности по сравнению со звуками слышимого диапазона. В ультразвуковом диапазоне сравнительно легко получить направленное излучение; он хорошо поддается фокусировке, в результате чего повышается интенсивность ультразвуковых колебаний. При распространении в газах, жидкостях и твердых телах ультразвук порождает интересные явления, многие из которых нашли практическое применение в различных областях науки и техники.
Так, ультразвуковые колебания применяют в неразрушающем контроле. Профессор С. Я. Соколов использовал свойство распространения ультразвука в ряде материалов и предложил в 1928 году новый метод обнаружения дефектов, залегающих в толще металла. Ультразвуковой метод скоро получил признание в нашей стране и за рубежом. Это объясняется более высокой чувствительностью по раскрытию на 5 порядков, достоверностью в 2 – 2,5 раза обнаружения дефектов, более высокой оперативностью в 15 – 20 раз и производительностью в 2 – 4 раза, меньшей стоимостью в 2 – 6 раз и безопасностью в работе по сравнению с другими методами неразрушающего контроля.
Согласно ГОСТ 23829-79 акустические метода делят на две большие группы: использующие излучение и приём акустических волн (активные методы) и основанные только на приёме (пассивные методы). В каждой из групп можно выделить методы, основанные на возникновении в объекте контроля бегущих и стоячих волн или колебаний.
Активные акустические методы, в которых применяют бегущие волны, делят на две подгруппы, использующие прохождение и отражение волн. Применяют как непрерывное, так и импульсное излучение.
К методам прохождения относятся следующие:
В методах отражения применяют, как правило, импульсное излучение. К этой подгруппе относятся следующие методы дефектоскопии.
Рисунок 1 – Классификация ультразвуковых методов контроля. |
От рассмотриенных акустических методов неразрушающего контроля существенно отличается иимпедансный метод, (рисунок 2 г) основанный на анализе изменения механического импеданса участка поверхности контролируемого объекта, с которым взаимодействует преобразователь. На использование стоячих волн основаны следующие методы:
Рисунок 2 – Схемы основных акустических методов контроля. |
К методам вынужденных колебаний относят акустико-топографический, акустико-эмиссионный метод. (рисунок 2 е)
Как видно, существует огромное количество методов ультразвуковой дефектоскопии, но один из наиболее распространённых методов является эхо-импульстный метод ультразвукового неразрушающего контроля. Это объясняется тем, что этот метод – в отличии от других – применим при одностороннем доступе к исследуемому объекту, и при этом позволяет определить размеры дефекта, его координаты, характер.
В эхо-импульсном методе ультразвуковой дефектоскопии (УЗД) используются те же принципы, что и в радио - и акустической локации.
Современный эхо-метод УЗД основан на излучении в контролируемое изделие коротких импульсов упругих колебаний (длительностью 0,5 – 10 мксек) и регистрации интенсивности (амплитуды) и времени прихода эхо-сигналов, отраженных от дефектов отражателей.
Импульсный эхо-метод
Аппаратура, реализующая данный метод, позволяет определить характер дефектов, идентифицировать их по размерам, формам, ориентации.
К основным характеристикам метода относятся: чувствительность, максимальная глубина прозвучивания, минимальная глубина ("мертвая" зона), разрешающая способность, точность измерения расстояния, производительность контроля[4].
Под чувствительностью понимают минимальный размер дефекта, находящийся на максимальной глубине и четко регистрируемый прибором. Количественно ее определяют порогом чувствительности. Для эхо-метода – это минимальная площадь искусственного дефекта типа плоскодонного отверстия, который обнаруживается при контроле. Ее можно определить по отражателям другого типа, выполняя пересчет на площадь плоскодонного отверстия по формулам акустического тракта. Порог чувствительности ограничивается двумя главными факторами: чувствительностью аппаратуры и уровнем помех. В зависимости от структуры материала будет и изменяться порог чувствительности.
Максимальная глубина прозвучивания определяется максимальным расстоянием от дефекта (отражателя) заданного размера, на котором он уверенно выявляется. Она ограничивается условием, чтобы сигнал от дефекта был больше минимального сигнала, регистрируемого прибором и уровня помех. Она также определяется параметрами аппаратуры. В технических характеристиках прибора в качестве максимальной глубины прозвучивания указывают максимальную длительность развертки дефектоскопа. Достижение максимальной глубины прозвучивания ограничивается теми же факторами, которые препятствуют повышению чувствительности.
Минимальная глубина или "мертвая" зона - минимальное расстояние от преобразователя или от поверхности изделия до дефекта, на котором он четко выявляется не сливаясь с зондирующим импульсом или импульсом от поверхности ввода ультразвука.
Разрешающая способность - минимальное расстояние между двумя одинаковыми дефектами, при котором они регистрируются раздельно. Различают лучевую и фронтальную разрешающую способности метода.
Лучевая разрешающая способность - минимальное расстояние в лучевом направлении, при котором сигналы от дефектов видны на экране как два раздельных импульса.
Фронтальная разрешающая способность по перемещению - минимальное расстояние между дефектами в направлении перпендикулярном лучевому.
Точность измерения расстояния до дефекта определяется погрешностью в % от измеряемой величины.
Производительность контроля определяется шагом и скоростью сканирования (перемещения) преобразователя. При оценке времени контроля учитывается и время на исследование дефекта.
Для обеспечения надежного
1. Сигнал от дефекта должен превосходить минимальный сигнал, регистрируемый регистратором прибора:
|
(2.2.1) |
2. Сигнал от дефекта должен быть больше сигнала помех:
|
(2.2.2) |
Для оптимального выполнения первого
условия выявления дефекта
Также, зачастую от правильного выбора частоты ультразвуковых колебаний зависит мощность по,лучения сигнала от дефекта, и как следствие, точность определения дефекта. Можно сказать, что частота является одним из главных параметров, от выбора которых зависит выявление. Остановимся подробно на её выборе. Как известно, частота зависит от коэффициента затухания. Для большинства материалов в диапазоне частот, применяемых в дефектоскопии, эта зависимость приближенно выражается формулой:
|
(2.3.1) |
где и - коэффициенты, не зависящие от частоты.
Первый член связан с поглощением, второй – с рассеянием ультразвука мелкими зернами (кристаллитами) металла.
При малых расстояниях от преобразователя до дефекта влияние затухания ультразвука невелико, поэтому в ближней зоне целесообразно применение высоких частот. В дальней зоне затухание имеет очень большое значение для рационального выбора частоты.
Оптимальная частота ультразвуковых колебаний определяется формулой
|
(2.3.2) |
где С1 – коэффициент, связанный с поглощением ультразвука r – расстояние от преобразователя ультразвуковых волн до дефекта |
для мелкозернистых материалов. А
для крупнозернистых
|
(2.3.3) |
где С2 в зависимости от соотношения λ и равна или (где - средний диаметр кристаллита) r – расстояние от преобразователя ультразвуковых волн до дефекта |
Таким образом, в обоих случаях с увеличением толщины изделия следует понижать частоту.
При ультразвуковой дефектоскопии
материалов и изделий, как и при
других видов дефектоскопии
- помехи усилителя дефектоскопа. Эти помехи препятствуют беспредельному увеличению коэффициента усиления приемного тракта дефектоскопа и определяют граничное значение регистрируемого прибором сигнала ;
- шумы преобразователя, возникающие при его работе по совмещенной схеме. Непосредственно после излучения зондирующего импульса чувствительность усилителя резко ослабляется в связи с сильным динамическим воздействием на него мощного сигнала генератора. Вследствие этого в указанной зоне резко возрастает граничное значение регистрируемого прибором сигнала . наличие многократных отражений в протекторе, призме преобразователя, контактной жидкости создает помехи, затягивающие действие зондирующего импульса. Эти помехи быстро исчезают;
- ложные сигналы, возникающие в результате отражения от выступов или выточек и других неровностей поверхности. Эти помехи мешают выявлению дефектов на отдельных участках объекта контроля;
- помехи, связанные с рассеянием ультразвука на структурных неоднородностях, зернах материала, т.е. структурной реверберацией. Сигналы от неоднородностей в зависимости от фазы ослабляют или усиливают друг друга. Они носят статистический характер.
Если дефект находиться в дальней зоне, то для улучшения выявляемости дефекта в дальней зоне целесообразно увеличивать размеры преобразователя. При увеличении диаметра преобразователя улучшается направленность излучения, однако граница ближней зоны удаляется от преобразователя и при дефект попадает в ближнюю зону. В ближней зоне увеличение диаметра преобразователя оказывает отрицательное влияние на отношение сигнал-шум, приводит к ухудшению направленности преобразователя.
Информация о работе Оборудование и техология эхо-импульсного метода ультразвуковой дефектоскопии