Автор работы: Пользователь скрыл имя, 06 Ноября 2014 в 22:51, курсовая работа
Кристаллы одни из самых красивых и загадочных творений природы. В настоящее время изучением многообразия кристаллов занимается наука кристаллография. Она выявляет признаки единства в этом многообразии, исследует свойства и строение, как одиночных кристаллов, так и кристаллических агрегатов. Кристаллография является наукой, всесторонне изучающей кристаллическое вещество. Данная работа также посвящена кристаллам и их свойствам.
Введение.................................................................................................1
Глава 1. Кристаллические и аморфные тела.....................................2
1.2. Идеальные кристаллы.............................................................2-3
1.3. Монокристаллы и кристаллические агрегаты................3-4
1.4. Поликристаллы................................................................4-5
Глава 2. Элементы симметрии кристаллов..................................6-11
Глава 3. Типы дефектов в твёрдых телах........................................12
3.1. Точечные дефекты..............................................................12-14
3.2. Линейные дефекты...............................................................14
3.3. Поверхностные дефекты.................................................15
3.4. Объёмные дефекты.......................................................15
Глава 4. Получение кристаллов..................................................16-17
Глава 5. Свойства кристаллов.....................................................18-20
Заключение.........................................................
Глава 3. Типы дефектов в твёрдых телах.
Все реальные твердые тела, как монокристаллические, так и поликристаллические, содержат так называемые структурные дефекты, типы, концентрация, поведение которых весьма разнообразны и зависят от природы, условий получения материалов и характера внешних воздействий. Большинство дефектов, созданных внешним воздействием, термодинамически неустойчиво, а состояние системы в этом случае является возбужденным (неравновесным). Таким внешним воздействием может быть температура, давление, облучение частицами и квантами высоких энергий, введение примесей, фазовый наклеп при полиморфных и других превращениях, механическое воздействие и т. п. Переход в равновесное состояние может проходить разными путями и, как правило, реализуется посредством ряда метастабильных состояний.
Дефекты одних типов, взаимодействуя с дефектами того же или иного типов, могут аннигилировать или образовывать новые ассоциации дефектов. Эти процессы сопровождаются уменьшением энергии системы.
По числу направлений N, в которых простирается нарушение периодического расположения атомов в кристаллической решетке, вызванное данным дефектом, выделяют дефекты:
К нульмерным (или точечным) дефектам кристалла относят все дефекты, которые связаны со смещением или заменой небольшой группы атомов, а также с примесями. Они возникают при нагреве, легировании, в процессе роста кристалла и в результате радиационного облучения. Могут вноситься также в результате имплантации. Свойства таких дефектов и механизмы их образования наиболее изучены, включая движение, взаимодействие, аннигиляцию, испарение.
В кристаллах часто наблюдаются также комплексы, состоящие из нескольких точечных дефектов, например: дефект по Френкелю (вакансия + собственный междоузельный атом), бивакансия (вакансия + вакансия), А-центр (вакансия + атом кислорода в кремнии и германии) и др.
Точечные дефекты повышают энергию кристалла, так как на образование каждого дефекта была затрачена определенная энергия. Упругая деформация обуславливает очень малую долю энергии образования вакансии, так как смещения ионов не превышают 1 % и соответствующая им энергия деформации составляет десятые доли эВ. При образовании межузельного атома смещения соседних ионов могут достигать 20 % от межатомного расстояния, а соответствующая им энергия упругой деформации решетки — нескольких эВ. Основная доля образования точечного дефекта связана с нарушением периодичности атомной структуры и сил связи между атомами. Точечный дефект в металле взаимодействует со всем электронным газом. Удаление положительного иона из узла равносильно внесению точечного отрицательного заряда; от этого заряда отталкиваются электроны проводимости, что вызывает повышение их энергии. Теоретические расчеты показывают, что энергия образования вакансии в ГЦК решетке меди составляет около 1 эВ, а межузельного атома — от 2.5 до 3.5 эВ.
Несмотря на увеличение энергии кристалла при образовании собственных точечных дефектов, они могут находиться в термодинамическом равновесии в решетке, так как их образование приводит к росту энтропии. При повышенных температурах рост энтропийного члена TS свободной энергии из-за образования точечных дефектов компенсирует рост полной энергии кристалла U, и свободная энергия оказывается минимальной.
Равновесная концентрация вакансий:
где E0 — энергия образования одной вакансии, k — постоянная Больцмана, T — абсолютная температура. Эта же формула справедлива для межузельных атомов. Формула показывает, что концентрация вакансий должна сильно зависеть от температуры. Формула для расчета проста, но точные количественные значения можно получить, только зная величину энергии образования дефекта. Рассчитать же теоретически эту величину весьма трудно, поэтому приходится довольствоваться лишь приближенными оценками.
Так как энергия образования дефекта входит в показатель степени, то это различие обусловливает громадную разницу в концентрации вакансий и межузельных атомов. Так, при 1000 °C в меди концентрация межузельных атомов составляет всего лишь 10−39, что на 35 порядков меньше концентрации вакансий при этой температуре. В плотных упаковках, какие характерны для большинства металлов, очень трудно образовываться межузельным атомам, и вакансии в таких кристаллах являются основными точечными дефектами (не считая примесных атомов).
Атомы, совершающие колебательное движение, непрерывно обмениваются энергией. Из-за хаотичности теплового движения энергия неравномерно распределена между разными атомами. В какой-то момент атом может получить от соседей такой избыток энергии, что он займет соседнее положение в решетке. Так осуществляется миграция (перемещение) точечных дефектов в объеме кристаллов.
Если один из атомов, окружающих вакансию, переместится в вакантный узел, то вакансия соответственно переместится на его место. Последовательные элементарные акты перемещения определенной вакансии осуществляются разными атомами. На рисунке показано, что в слое плотноупакованных шаров (атомов) для перемещения одного из шаров в вакантное место он должен раздвинуть шары 1 и 2. Следовательно, для перехода из положения в узле, где энергия атома минимальна, в соседний вакантный узел, где энергия также минимальна, атом должен пройти через состояние с повышенной потенциальной энергией, преодолеть энергетический барьер. Для этого и необходимо атому получить от соседей избыток энергии, который он теряет, «протискиваясь» в новое положение. Высота энергетического барьера Em называется энергией активации миграции вакансии.
Основным источником и стоком точечных дефектов являются линейные и поверхностные дефекты. В крупных совершенных монокристаллах возможен распад пересыщенного твердого раствора собственных точечных дефектов с образованием т. н. микродефектов.
Простейший комплекс точечных дефектов — бивакансия (дивакансия): две вакансии, расположенные в соседних узлах решетки. Большую роль в металлах и полупроводниках играют комплексы, состоящие из двух и более примесных атомов, а также из примесных атомов и собственных точечных дефектов. В частности, такие комплексы могут существенно влиять на прочностные, электрические и оптические свойства твердых тел.
3.2. Линейные дефекты.
3.3. Поверхностные дефекты.
Основной дефект-представитель этого класса — поверхность кристалла. Другие случаи — границы зёрен материала, в том числе малоугловые границы (представляют собой ассоциации дислокаций), плоскости двойникования, поверхности раздела фаз и др.
3.4. Объёмные дефекты.