Автор работы: Пользователь скрыл имя, 16 Декабря 2013 в 13:31, реферат
Основные формулы
• Момент силы F, действующей на тело, относительно оси вращения
,
где — проекция силы F на плоскость, перпендикулярную оси вращения; l — плечо силы F (кратчайшее расстояние от оси вращения до линии действия силы).
• Момент инерции относительно оси вращения:
а) материальной точки
J=mr2,
где т — масса точки; r — расстояние ее от оси вращения;
3.13. Найти момент инерции J тонкого однородного кольца радиусом R=20 см и массой m=100 г относительно оси, лежащей в плоскости кольца и проходящей через его центр.
3.14. Определить момент инерции J кольца массой т=50 г и радиусом R=10 см относительно оси, касательной к кольцу.
Рис. 3.11
Рис. 3.12
3.15. Диаметр диска d=20 см, масса т=800 г. Определить момент инерции J диска относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска.
3.16. В однородном диске массой т=1 кг и радиусом r=30 см вырезано круглое отверстие диаметром d=20 см, центр которого находится на расстоянии l=15 см от оси диска (рис. 3.12). Найти момент инерции J полученного тела относительно оси, проходящей перпендикулярно плоскости диска через его центр.
3.17. Найти момент инерции J плоской однородной прямоугольной пластины массой т=800 г относительно оси, совпадающей с одной из ее сторон, если длина а другой стороны равна 40 см.
3.18. Определить момент инерции J тонкой плоской пластины со сторонами а=10 см и b=20 см относительно оси, проходящей
через центр масс пластины параллельно большей стороне. Масса пластины равномерно распределена по ее площади с поверхностной плотностью σ=1,2 кг/м2.
Основное уравнение динамики вращательного движения
3.19. Тонкий однородный стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси, проходящей через точку О на стержне (рис. 3.13). Стержень отклонили от вертикали на угол а и отпустили. Определить для начального момента времени угловое в и тангенциальное аt ускорения точки В на стержне. Вычисления произвести для следующих случаев:
Рис. 3.13
3.20. Однородный диск радиусом R = 10 см может свободно вращаться вокруг горизонтальной оси, перпендикулярной плоскости
диска и проходящей через точку О на нем (рис. 3.14). Диск отклонили на угол а и отпустили. Определить для начального момента времени угловое ε и тангенциальное ат ускорения точки В, находящейся на диске. Вычисления выполнить для следующих случаев:
3.21. Тонкий однородный стержень длиной l=50 см и массой m=400 г вращается с угловым ускорением ε=3 рад/с2 около оси, проходящей перпендикулярно стержню через его середину. Определить вращающий момент М.
3.22. На горизонтальную ось насажены маховик и легкий шкив радиусом R=5 см. На шкив намотан шнур, к которому привязан груз массой т=0,4 кг. Опускаясь равноускоренно, груз прошел путь s=l,8 м за время t=3 с, Определить момент инерции J маховика. Массу шкива считать пренебрежимо малой.
3.23. Вал массой m=100 кг и радиусом R=5 см вращался с частотой n=8 с-1. К цилиндрической поверхности вала прижали тормозную колодку с силой F=40 H, под действием которой вал остановился через t=10 с. Определить коэффициент трения f.
Рис. 3.14
Рис. 3.15
3.24. На цилиндр намотана тонкая гибкая нерастяжимая лента, массой которой по сравнению с массой цилиндра можно пренебречь. Свободный конец ленты прикрепили к кронштейну и предоставили цилиндру опускаться под действием силы тяжести. Определить линейное ускорение а оси цилиндра, если цилиндр: 1) сплошной; 2) полый тонкостенный.
3.25. Через блок, имеющий форму диска, перекинут шнур. К концам шнура привязали грузики массой m1=100 г и т2=110 г. С каким ускорением а будут двигаться грузики, если масса т блока равна 400 г? Трение при вращении блока ничтожно мало.
3:26. Два тела массами т1=0,25 кг и m2=0,15 кг связаны тон, кой нитью, переброшенной через блок (рис. 3.15). Блок укреплен на краю горизонтального стола, по поверхности которого скользит тело массой т1. С каким ускорением а движутся тела и каковы силы T1 и Т2 натяжения нити по обе. стороны от блока? Коэффициент трения f тела о поверхность стола равен 0,2. Масса т блока равна 0,1 кг и ее можно считать равномерно распределенной по
ободу. Массой нити и трением в подшипниках оси блока пренебречь.
3.27. Через неподвижный блок массой т=0,2 кг перекинут шнур, к концам которого подвесили грузы массами m1=0,3 кг и m2=0,5 кг. Определить силы натяжения T1 и T2 шнура по обе стороны блока во время движения грузов, если масса блока равномерно распределена по ободу.
3.28. Шар массой m=10 кг и радиусом R=20 см вращается во
круг оси, проходящей через его центр.
Уравнение вращения шара
имеет вид
, где В=4 рад/с2, С= —1 рад/с3.
Найти
закон изменения момента сил, действующих
на шар. Определить
момент сил М в момент времени t=2 с.
Рис. 3.16
3.29. Однородный тонкий стержень массой m1=0,2 кг и длиной l=1 м может свободно вращаться вокруг горизонтальной оси z, проходящей через точку О (рис. 3.16). В точку А на стержне попадает пластилиновый шарик, летящий горизонтально (перпендикулярно оси z) со скоростью υ=10 м/с и прилипает к стержню. Масса
Рис. 3.17
т2 шарика равна 10 г. Определить угловую скорость W стержня и линейную скорость и нижнего конца стержня в начальный момент времени. Вычисления выполнить для следующих значений расстояния между точками А и О: 1) l/2; 2) l/3; 3) l/4.
3.30. Однородный диск массой т1= 0,2 кг и радиусом R=20 см может свободно вращаться вокруг горизонтальной оси z, перпендикулярной плоскости диска и проходящей через точку С (рис. 3.17). В точку, А на образующей диска попадает пластилиновый шарик, летящий горизонтально (перпендикулярно оси z) со скоростью υ= 10 м/с, и прилипает к его поверхности. Масса т2 шарика равна 10 г. Определить угловую скорость W диска и линейную скорость и точки О на диске в начальный момент времени. Вычисления выполнить для следующих значений а и b: 1) a=b=R; 2) a=R/2, b=R; 3) a=2R/3, b=R/2; 4) a=R/3, b=2R/3.
3.31. Человек стоит на скамье Жуковского и ловит рукой мяч массой т=0,4 кг, летящий в горизонтальном направлении со скоростью υ=20 м/с. Траектория мяча проходит на расстоянии r =0,8 м от вертикальной оси вращения скамьи. С какой угловой скоростью w начнет вращаться скамья Жуковского с человеком, поймавшим мяч, если суммарный момент инерции J человека и скамьи равен 6 кг-м2?
3.32. Маховик, имеющий вид диска радиусом R=40 см и массой т1=48 кг, может вращаться вокруг горизонтальной оси. К его цилиндрической поверхности прикреплен конец нерастяжимой нити, к другому концу которой подвешен груз массой т2= 0,2 кг (рис. 3.18). Груз был приподнят и затем опущен. Упав свободно с высоты h=2 м, груз натянул нить и благодаря этому привел маховик во вращение. Какую угловую скорость w груз сообщил при этом маховику?
3.33. На краю горизонтальной платфор-
мы, имеющей форму диска радиусом R=2м, стоит человек
массой т1=80кг. Масса m2 платформы равна 240 кг.
Платформа может вращаться вокруг вертикальной оси, проходящей через ее центр. Пренебрегая трением, найти, с какой угловой скоростью w будет вращаться платформа, если человек будет идти вдоль ее края со скоростью V=2 м/с относительно платформы.
3.34. Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек массой т1=60 кг. На какой угол φ повернется платформа, если человек пойдет вдоль края платформы и, обойдя его, вернется в исходную точку на платформе? Масса т2 платформы равна 240 кг. Момент инерции J человека рассчитывать как для материальной точки.
3.35. Платформа в виде диска радиусом R=1 м вращается по инерции с частотой n1=6мин-1. На краю платформы стоит человек, масса т которого равна 80 кг. С какой частотой п будет вращаться платформа, если человек перейдет в ,ее центр? Момент инерции J платформы равен 120 кг·м2. Момент инерции человека рассчитывать как для материальной точки.
3.36. В центре скамьи Жуковского стоит человек и держит в руках стержень длиной l=2,4 м и массой т=8 кг, расположенный вертикально по оси вращения скамейки. Скамья с человеком вращается с частотой n1=1 с-1. С какой частотой n2 будет вращаться скамья с человеком, если он повернет стержень в горизонтальное положение? Суммарный момент инерции J человека и скамьи равен 6 кг·м2.
3.37. Человек стоит на скамье Жуковского и держит в руках стержень, расположенный вертикально вдоль оси вращения скамейки. Стержень служит осью вращения колеса, расположенного
на верхнем конце стержня. Скамья неподвижна, колесо вращается с частотой n=10 с-1. Радиус R колеса равен 20 см, его масса т=3 кг. Определить частоту вращения п2 скамьи, если человек повернет стержень на угол 180°? Суммарный момент инерции J человека и скамьи равен 6 кг·м2. Массу колеса можно считать равномерно распределенной по ободу.
3.38. Шарик массой т=100 г, привязанный к концу нити длиной l1=l м, вращается, опираясь на горизонтальную плоскость, с частотой n1=1 с-1. Нить укорачивается и шарик приближается к оси вращения до расстояния l2=0,5 м. С какой частотой n2 будет при этом вращаться шарик? Какую работу А совершит внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь.
3.39. Маховик вращается по закону, выражаемому уравнением φ=A+Bt+Ct2, где A=2 рад, B=32 рад/с, С=—4 рад/с2. Найти среднюю мощность <N>, развиваемую силами, действующими на маховик при его вращении, до остановки, если его момент инерции J=100 кг·м2.
3.40. Маховик вращается по закону, выражаемому уравнением φ=A+Bt+Ct2, где А=2 рад, В=16 рад/с, С=—2 рад/с2. Момент инерции J маховика равен 50 кг-м2. Найти законы, по которым меняются вращающий момент М и мощность N. Чему равна мощность в момент времени t=3 с?
3.41. Якорь мотора вращается с частотой n=1500 мин-1. Определить вращающий момент М, если мотор развивает мощность N=500 Вт.
3.42. Со шкива диаметром d=0,48 м через ремень передается мощность N=9 кВт. Шкив вращается с частотой и=240 мин-1. Сила натяжения T1 ведущей ветви ремня в два раза больше силы натяжения Т2 ведомой ветви. Найти силы натяжения обеих ветвей ремня.
3.43. Для определения мощности мотора на его шкив диаметром d=20 см накинули ленту. К одному концу ленты прикреплен динамометр, к другому подвесили груз Р.Найти мощность N мотора, если мотор вращается с частотой n=24 с-1, масса т груза равна 1 кг и показание динамометра F=24 Н.
3.44. Маховик в виде диска массой m=80 кг и радиусом R=30 см находится в состоянии покоя. Какую работу A1 нужно совершить, чтобы сообщить маховику частоту n=10 с-1? Какую работу A2 пришлось бы совершить, если бы при той же массе диск имел меньшую толщину, но вдвое больший радиус?
3.45. Кинетическая энергия Т вращающегося маховика равна 1 кДж. Под действием постоянного тормозящего момента маховик начал вращаться равнозамедленно и, сделав N=80 оборотов, остановился. Определить момент М силы торможения.
3.46. Маховик, момент инерции J которого равен 40 кг ·м2, начал
вращаться равноускоренно из состояния покоя под действием момента силы М=20 Н·м. Вращение продолжалось в течение t= 10 с. Определить кинетическую энергию Т, приобретенную маховиком.
3.47. Пуля массой m=10 г летит со скоростью V=800 м/с, вращаясь около продольной оси с частотой n=3000 с-1. Принимая пулю за цилиндрик диаметром d=8 мм, определить полную кинетическую энергию Т пули.
3.48. Сплошной цилиндр массой т=4 кг катится без скольжения по горизонтальной поверхности. Линейная скорость v оси цилиндра равна 1 м/с. Определить полную кинетическую энергию Г цилиндра.
3.49. Обруч и сплошной цилиндр, имеющие одинаковую массу т=2 кг, катятся без скольжения с одинаковой скоростью υ=5 м/с. Найти кинетические энергии Т1 и Т2 этих тел.
3.50. Шар катится без скольжения по горизонтальной поверхности. Полная кинетическая энергия Т шара равна 14 Дж. Определить кинетическую энергию T1 поступательного и T2 вращательного движения шара.
3.51. Определить линейную скорость v центра шара, скатившегося без скольжения с наклонной плоскости высотой h=l м.
3.52. Сколько времени t будет скатываться без скольжения обруч с наклонной плоскости длиной l=2 м и высотой h=10 см?
3.53. Тонкий прямой стержень длиной l=1 м прикреплен к горизонтальной оси, проходящей через его конец. Стержень отклонили на угол φ=60° от положения равновесия и отпустили. Определить линейную скорость υ нижнего конца стержня в момент прохождения через положение равновесия.
3.54. Однородный тонкий стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси z, проходящей через точку О на стержне. Стержень отклонили от положения равновесия на угол а и отпустили (см. рис. 3.13). Определить угловую скорость со стержня и линейную скорость V точки В на стержне в момент прохождения им положения равновесия. Вычисления выполнить для следующих случаев: 1) а=0, b=l/2, α=π/3; 2) а=l/3, b=2l/3, α=π/2; 3) а=l/4, b=l, α=2π/3.
3.55. Карандаш длиной l=15 см, поставленный вертикально, падает на стол. Какую угловую со и линейную v скорости будет иметь в конце падения: 1) середина карандаша? 2) верхний его конец? Считать, что трение настолько велико, что нижний конец карандаша не проскальзывает.
3.56. Однородный диск радиусом R=20 см может свободно вращаться вокруг горизонтальной оси z, перпендикулярной плоскости диска и проходящей через точку О (см. рис. 3.14). Определить угловую со и линейную v скорости точки В на диске в момент прохождения им положения равновесия. Вычисления выполнить для следующих случаев: 1) a=b=R, α=π/2; 2) a=R/2, b=0, α=π/3; 3) а=2R/3, b=2R/3, α=5π/6; 4) a=R/3, b=R, α=2π/3.
Информация о работе Динамика вращательного движения твердого тела вокруг неподвижной оси