Автор работы: Пользователь скрыл имя, 11 Ноября 2012 в 13:16, курсовая работа
Одной из фундаментальных проблем, состоящих перед человечеством, является энергетическая проблема. В настоящее время основными источниками энергии являются уголь, нефть и газ. Их прогнозные запасы оцениваются, соответственно, в 15 трлн.т , 500 млрд. т и 400 трлн. м3. При современном уровне добычи разведанных запасов угля хватит на 400 лет, нефти на 42 года и газа на 61 год.
lt;p align="left">4. Кремниевая(силикатная) энергетика В настоящее время почти вся энергетика Земли является углеродной. Наряду с атомной используется и возобновляемые источники энергии - солнечная, ветровая, биомассы и др. Однако они не могут иметь большой мощности и их размещают там, где есть сами энергоисточники. Поэтому, как показывают исследования, широкая гамма высокомодульных силикатов, кремнезем может использоваться в энергетических целях, т.е. для получения электроэнергии за счет протекания высокотемпературных физико-химических реакций в гетерогенных силикатных расплавов и путем их сжигания. Теплота их сгорания составляет 40 МДж/кг, при стоимости меньшей, чем стоимость традиционных углеводородов. Кроме того, кремниевая энергетика имеет и свои особенности. Во-первых, кремний имеет высокую теплотворную способность, чем углеродные энергоносители, во-вторых, отходом силикатной энергии является кремнезем - чистый кварцевый песок (газообразных отходов нет), и в третьих сама «зола» ценнейший технический, конструкционный и строительный материал, т.е. кремниевая энергетика - безотходное производство[14]. 4.1 Селективный электрохимический процесс На основе открытия «процесс обеднения- особого селективного электрохимического процесса» В.Соболевым и другими разработана технология получения легких сверхпрочных материалов для авто, авиа, ракето- и машиностроения при воздействии электрического поля с помощью высокотемпературной технологии. По составу они соответствуют оксидам кремния, алюминия, титана и других технических материалов, но сильно отличаются по физико-химическим свойствам от базовых этих веществ. При напряжении 2000В в электропечи с расплавленного вещества из кремнезема происходит «срыв электронов» и, подобно обычному электролизу, на катоде происходит образование нового вещества путем обеднения расплава химическими элементами металлов. Полученное вещество многоэлементного химического соединения находится в особом состоянии, которое характеризуется нестехиометрией состава. Это вещество содержать в себе фиксированный электрический заряд довольно большой величины - положительный или отрицательный по нашему усмотрению. Новое состояние вещества формирует устойчивые структуры в сплошной среде, которые излучают переменный магнитный поток, то есть они открыли новый источник энергии. Устройство такого источника работает устойчиво и сколь угодно долго при обычных температурах, преобразуя электромагнитное поле Земли в электрический ток. 4.2 Кремний безкислородные соединения инициирует цепную реакцию. По данным А.Н.Куликова при физико-химическом взаимодействии силиката с без кислородным соединением кремния (нитрид или карбид кремния) с нарастанием количества реагирующего вещества происходит расщепление массы силиката по цепной реакции путем освобождения энергии. Рабочим веществом в таком физико-химическом реакторе является высокомодульные силикаты, а кремний безкислородные соединения инициирует цепную реакцию. Для распада силиката в реакторе вначале необходимо энергия для расплавления части исходного вещества. После этого расход тепла не нужен, так как в контакте с кремнийбескислородным веществом начнется химическая реакция с выделением тепла, что приведет к расплавлению все большего количества силиката. Процесс будет продолжаться до тех пор, пока масса реагента в жидкой фазе не станет равной критической. С этого момента начинается цепная реакция, сопровождаемая лавинообразным выделением энергии. Управление интенсивности цепной реакции осуществляется путем введения стержня из кремнийбескислородного соединения(например карбид кремния) в расплав силиката до необходимой глубины. При вдвигании стержней в реактор реакция увеличивается, растет и тепловыделение, а при выдвигании - уменьшается. То есть эти стержены будут поддерживать баланс выделяющегося и потребляемого тепла, что обеспечит необходимую мощность энергоустановки и предотвращения возможного взрыва. Над разработкой силикатной технологией наша научная группа(Ташполотов Ы., Садыков Э., Айдаралиев Ж.К., Матисаков Ж. и др.) занимается с 1998 года. Таким образом, будущее земной
энергетики в главном, будет основано
на водородной, термоядерной, кремниевой
и геомагнитной источников энергии.
В связи с этим необходимо основательно
с фундаментальных позиций Литература 1. Перельман Я.И. Занимательная алгебра. М.: Наука, 1976. - 200с. 2. Андреев Е.И. Основы естественной энергетики. СПб: Нев. Жемчужина, 2004. -582с. 3. Шейндлин А.Е. Проблемы новой энергетики. М.: Наука, 2006. - 405с. 4. Канарев Ф.М. Введение в водородную энергетику. Краснодар, 1999. - 22с. 5. Месяц Г.А., Прохоров М.Д. Водородная энергетика и топливные элементы // Вестник РАН, 2004, т.74, №7, с. 579 - 597. 6. Дашков И.И. Водород
- топлива будущего. // Механизация
и электрификация сельского 7. Херольд Л. Фокс. Холодный ядерный синтез: сущность, проблемы, влияние на мир. Взгляд из США. М., 1993. - 180с. 8. Цивинский С.В. Кавитационная термоядерная электростанция // Естественные и технические науки, 2006, №2, с.178-183. 9. Канарев Ф.М. Вода-новый источник энергии. Краснодар, 1999. - 152с. 10. Косинов Н.В. Происхождение протона.// Физический вакуум и природа, 2000, №3. 11. Потапов Ю.С., Фоминский Л.П., Потапов С.Ю. Энергия вращения.М., 2002. 12. Курилов Ю.М. Альтернативный
источник энергии. 13. Хайтун С.Д. Энергетика, построенная на круговороте тепла и веч ........... Страницы: 1 | 2 | 3 | 4 | [5] | |