Автор работы: Пользователь скрыл имя, 11 Ноября 2012 в 13:16, курсовая работа
Одной из фундаментальных проблем, состоящих перед человечеством, является энергетическая проблема. В настоящее время основными источниками энергии являются уголь, нефть и газ. Их прогнозные запасы оцениваются, соответственно, в 15 трлн.т , 500 млрд. т и 400 трлн. м3. При современном уровне добычи разведанных запасов угля хватит на 400 лет, нефти на 42 года и газа на 61 год.
Альтернативные источники энергии
Введение
Одной из фундаментальных проблем, состоящих перед человечеством, является энергетическая проблема. В настоящее время основными источниками энергии являются уголь, нефть и газ. Их прогнозные запасы оцениваются, соответственно, в 15 трлн.т , 500 млрд. т и 400 трлн. м3. При современном уровне добычи разведанных запасов угля хватит на 400 лет, нефти на 42 года и газа на 61 год. Мировая энергетическая система стоит перед лицом гигантских проблем. Поэтому, стремительное истощение природных энергоносителей выводит задачу поиска принципиально новых способов получения энергии на первый план и в ближайшей перспективе должна снижаться роли нефти, природного газа и угля.
Сейчас
известно, что древесина - это аккумулированная
с помощью фотосинтеза
С точки зрения современной физики топливо является поставщиком свободных электронов - генераторов энергии. Тогда можно предположить, что свободные электроны, получаемые от топлива, можно заменить электронами связи любых других элементов, при этом, исключая в процессе горения вышеназванных основных энергоносителей. Так как продукты горения связываются в окислы, но окисление является следствием, а не причиной горения.
Если процессу горения подойти с таких позиций, то на наш взгляд, необходим разработки и создания новой концепции источников энергии и энергетической технологии на основе переосмысления современной физики и химии, процесса горения и роли электрических и других полей в природных, технологических и других энергетических процессах, так как возможность повышения эффективности традиционной энергетики во многом ограничена законами физики и термодинамики. С другой стороны существующие способы получения энергии, как тепловой, электрической так и атомной являются губительными для окружающей среды. Технологии аккумулирования солнечной и другие виды альтернативных видов энергий пока еще не получали широкого применения. Однако, стремительное истощение природных энергоносителей ставят задачу активного поиска принципиально новых источников и способов получения энергии. Здесь прорывным считаются такие научно-технические решения, которые позволяют определить неисчерпаемый источник энергии, способный заменить нефть, уголь и газ, но в отличие от последних, не загрязняющий окружающую среду.
Известно, что современные
способы получения энергии
Таблица 1
Удельный энергетический выход в различных способах получения энергии
№, п/п |
Способы получения энергии |
Химические реакции |
|
1. |
Сжигание углеродосодержащих энергоносителей |
С+О2 0,0046 МэВ + СО2 |
|
2. |
Распад атомных ядер |
U235 0,85 MэВ + ядерные отходы |
|
3. |
Термоядерный синтез |
Д +Т 4Не2 + 17,6 МэВ |
|
Из таблицы 1 видно, что наименее эффективны способы получения энергии, основанные на сжигании топлива. Атомная энергетика имеет несколько порядков лучшие показатели. Во всех приведенных способах процесс получения энергии сопровождается появлением веществ, небезопасных для биосферы. Исходные химические элементы никуда не деваются, а образуют новые химические или ядерные соединения, которые остаются в виде отходов или попадают в атмосферу. Поэтому задача состоит в том, чтобы найти новые способы получения энергии, свободные от недостатков традиционных технологий.
Наиболее эффективным
сейчас считается управляемый
Согласно работы [2] на Земле есть два основных источника энергии: первый - это вещество, в которой природой аккумулирована энергия связи элементарных частиц, ...........
которая высвобождается при расщеплении-распаде вещества на элементарные частицы, второй источник энергии - это электринный газ, эфир, энергия которого пополняется, потоками нейтрино. Природа в энергетических
процессах обходится без Рассмотрим некоторые известные виды разработанных новых энерготехнологий. 1. Вода - новый источник энергии В настоящее время многие ученые считают водород наиболее перспективным энергоносителем будущей энергетики [3-6]. Основным и очень доступным его источником является вода. При его сжигании водорода образуется опять вода - совершенно безопасное вещество. Поэтому считается, что по экологической безопасности у водорода нет конкурентов. Однако реализация этой задачи сдерживается большими энергозатратами на получение водорода из воды. Если нефть, газ и уголь - это готовые энергоносители, а водород в чистом виде на Земле отсутствует. Для того, чтобы водородная энергетика состоялась, нужно, чтобы полученная энергия при сжигании водорода намного превышала затраченную энергию на его получение. При помощи электроэнергии воду можно разложить на водород и кислород. Когда вода подвергается действию с частотой, совпадающей с ее своей молекулярной частотой методом применения системы, созданной Стэном Майерсом (США) и вторично созданной не так давно компанией Xogen Power, она (вода) разлагается на кислород и водород при минимальных издержек электроэнергии. Внедрение разных электролитов (добавок, увеличивающих электрическую проводимость воды) резко увеличивает эффективность пpoцecса. Наряду с этим, различные геометрические формы и текстуры поверхности благоприятно влияют на увеличение эффективности процесса разложения воды. Например, в 1957 году исследователем Фридманом (США) был патентован особый железный сплав, внедрение которого приводит к самопроизвольному разложению воды на водород и кислород. Это означает, что с помощью этого железного сплава может быть непрерывное получение водорода из воды. Рассмотрим работы разных авторов, посвященные к получению водорода из воды. 1.1 Холодный ядерный синтез Теоретические и экспериментальные результаты исследований показывают, что наиболее вероятным источником дешевого водорода, получаемого из воды, может стать её плазменный электролиз. При обычном электролизе, американские ученые Понс и Флешман в 1989 году показали возможность получения дополнительной энергии. По их мнению, источником этой энергии является холодный ядерный синтез[7], зафиксированные ими при плазменном электролизе воды. В [8] обнаружено излучение до 1000 нейтронов в 1 секунду при массовом захлопывании кавитационных пузырьков и выделении тепловой энергии в 20 раз больше чем затраченной на образование потока воды в трубе. Кавитация как резонанс частоты колебаний молекул жидкости с частотой колебаний пузырьков пара, их образованием и схлопыванием сопровождается разгоном звуковых и ударных волн, высокими параметрами на фронте волны и низкими за фронтом волны. Это приводит к распаду вещества (ФПВР) на элементарные частицы с выделением большого количества тепла. Автор работы [8] предполагает, что во время захлопывании пузырьков существует вероятность захвата протонами электронов и образует атом водорода(при температуре 10000 К). Как известно, атомы водорода существуют в интервале температур 5000-100000С, что вытекает возможность формирования плазмы с такой температурой при определенной плотности атомов водорода в единице объема. В таких условиях молекула воды должна разрушаться, и ядро атома водорода превратиться в нейтрон. Последний, далее присоединяется к другому атому водорода или кислорода другой молекулы воды образуя, дейтерий или тритий или более тяжелый изотоп кислорода. При этом выделяется внутриядерная энергия и осуществиться холодный ядерный синтез. 1.2 Плазменный электролиз воды В [9] Ф.М.Канаревым установлено, что источником дополнительной энергии при обычном и плазменном электролизе воды является не синтез ядер, а синтез атомов и молекул водорода. В последующих работах он получил результаты, показывающие уменьшение затрат энергии на получение водорода при плазменном электролизе воды. Таким образом, для того чтобы водородная энергетика состоялось, нужно, чтобы полученная энергия при сжигании водорода намного превышала затраченную энергию на его получение. Известно, что в природе существует экономный процесс разложения молекул воды на водород и кислород. Например, при фотосинтезе атомы водорода отделяются от молекул воды, и используется в качестве соединительных звеньев при формировании органических молекул, а кислород уходит в атмосферу. По данным [9], в низкотемпературном электролизере процесс электролиза воды аналогичен тому, который идет при фотосинтезе. 1.3 Процесс индуцированного распада протона на основе плазмо-электрического процесса Исследование и изучение
распада протона, возможно, станет основой
получения экологически чистой и
дешевой энергии. Вышеприведенные
экспериментально установленные данные
указывает на то, что возможен процесс
индуцированного распада |
тделившихся от молекулы воды, и у катода формируется плазма. Сформировавшаяся плазма ограничивает контакт раствора с поверхностью катода. На границе «плазма-реактор» атомы водорода соединяются в молекулы. Таким образом, при плазмоэлектрическом процессе источником плазмы является атомарный водород. Синтез атома водорода - процесс соединения свободного протона со свободным электроном. Атомарный водород существует, как известно, при температуре 5000-100000С, то в зоне катода образуется плазма с такой температурой. 1.4 Энергия вращения. 1.4.1 Квантовые теплоэлектростанции Теория движения показывает, что при раскручивании тел может выделиться за счет релятивистских эффектов не более двух джоулей энергии излучений на каждый вложенный во вращение тела джоуль механической энергии[11]. При этом в таких установках коэффициент преобразования электрической энергии в тепловую достигает до 300%, а если же использовать специальные жидкости, то разогнанная установка, даже после выключения электродвигателя будет выделять тепловую энергию без потребления электрической. Таким образом, расчеты дает эффективность, близкую к бесконечности и получать даровую энергию. На основании этого появляются описании конструкции квантовой теплоэлектростанции, которая в качестве топлива использует воду и энергию вращения, вырабатывающие одновременно и электроэнергию, и горячую воду для теплоснабжения городов. Здесь процессы превращения внутренней энергии вещества в энергию излучений при ускорении вращения тел, а затем в тепло носят исключительно квантовый характер. Энергия новых связей, возникающих в веществе при его вращении, выделяется порциями - квантами. Величина этих квантов минимальна (<1эВ) при возникновении водородных связей и максимальна (до десятков МэВ) при связывании отдельных нуклонов в ядра атомов. Но во всех случаях это квантовые процессы. Поэтому энергетические установки, использующие такие процессы, авторы назвали квантовыми. 1.4.2 Внутренная энергия воды Гипотеза о структуре воды подсказывает, что цепочки из тетрамеров, всегда имеющиеся в жидкой воде, при ее быстром и неравномерном в пространстве течении должны выстраиваться и вытягиваться вдоль линий тока воды, то есть их хаотичное расположение сменяется на упорядоченное. При вихревом движении воды вероятность соединения концы цепочек тетрамеров свободными водородными связями, возрастает по сравнению с неупорядоченным расположением. А каждая вновь образованная водородная связь - это 0,26-0,5 эВ энергии, выделяющейся из воды. Итак, теория движения показывает, что вода, приводимая во вращение в вихре, может выделить в виде излучений часть своей внутренней энергии, в процессе образования в вихревом потоке межмолекулярных связей. 1.5 Электрофизическая активация При осуществлении процесса
электрофизической активации, нами(ТашполотовЫ.,СадыковЭ., 2.Бестопливные энергосистемы-источник альтернативной энергии 2.1 Электрическое поле земли - источник альтернативной энергии Известно, что планета Земля и ее ионосфера образуют "сферический конденсатор", напряженность создаваемого им электростатического поля составляет в среднем 100 В/м. Это "позволяет смотреть на Землю, как на огромный резервуар электричества..." и дает человечеству надежду, "подключить свои машины к самому источнику энергии окружающего пространства". Одна из возможных конструкций - антенна в виде металлизированного аэростата, поднятого над землей и служащего накопителем электрического заряда. Будучи соединенным с преобразователем энергии с помощью кабеля, этот накопитель способен использовать "дармовую" энергию атмосферного электричества[12]. Внутренняя сфера - поверхность Земли - заряжена отрицательно, внешняя сфера - ионосфера - положительно. Изолятором служит атмосфера Земли. Подключив обычный металлический проводник к отрицательному полюсу - Земле, а положительный полюс - ионосфере - с помощью специфического проводника - конвективного тока, мы получим глобальный генератор электрической энергии. Конвективные токи - это электрические токи, обусловленные упорядоченным переносом заряженных частиц. В природе они встречаются часто. Самые мощные из них - это ураганы и восходящие потоки воздуха во внутритропической зоне конвергенции, которые уносят огромное количество отрицательных зарядов в верхние слои тропосферы. На практике для того чтобы удалять избыточные заряды с верхней точки проводника необходимо устройство, которое позволяет электронам проводимости покинуть проводник - излучатель электронов или эмиттер. Эмиттер может быть построен на базе высоковольтного генератора небольшой мощности, который способен создать коронный разряд вокруг излучающего электрода на верхушке проводника. Т ........... |
акие высоковольтные генераторы используются в промышленности в дымоулавливателях, ионизаторах воздуха, установках для электростатической окраски металлов и различных бытовых приборах. Генератор создает вокруг излучателя электронов проводимости искровой, коронный или кистевой разряд. Такой разряд является проводящим плазменным каналом, по которому электроны проводимости свободно стекают в атмосферу уже под действием электрического поля Земли. Нами(Ташполотов Ы., Садыков Э., Исаков Д.) также разрабатываются эмиттеры -излучатели электронов для получения тока на основе электрического поля Земли.
Электростатический генератор Ефименко является реализацией этого способа извлечения энергии из окружающего пространства. В его машине цилиндрический ротор вращается в потенциальном электрическом поле, создавая с помощью обычного динамо мощность около 70 Вт. Источником поля (? 6000 В) служит электрическое поле Земли, для чего установка имеет антенну и заземление.
2.2 Потенциальное поле Земли - источник энергии
Наличие потенциального (гравитационного,
электрического, магнитного) поля Земли
говорит о возможности
Примером использования градиента поля является работа Брауна в области электрогравитации. Известно, что в конденсаторе используют обычно пластины равной площади, но если одна из них значительно меньше другой, то поле между ними уже не является равномерным, то есть возникает градиент напряженности поля. В таком поле объект из диэлектрика, например, отдельная частица материала, поляризуется неравномерно, поэтому возникнет сила, двигающая ее в сторону большей напряженности поля. А напряженность уже есть градиент потенциала, то есть речь идет о градиенте градиента - о второй производной потенциала поля, что подтверждает известное правило: изменение дает новое качество.
В общем случае, если конструкция
позволяет преобразовывать
Геомагнитное поле в настоящее
время не используется жителями Земли
для получения энергии. Предыдущие
цивилизации использовали геомагнитное
поле в качестве источника энергии.
Свидетельствами этому являются
древние лабиринты, пирамиды, сооружения
Стоунхенджа. В них как в структурах
с неравномерным электрическим
потенциалом под действием
3. Виброрезонансные технологии
3.1 Колебания атомов, молекул и их агрегатов в веществах - это неиссякаемый источник энергии
Использование этого источника, непрерывно восстанавливаемый за счет энергии окружающей среды, например, в гидравлическом таране, вечной лампочке Кушелева является достижением, позволяющим заставить «работать» атом без вредной радиации. При этом, как видно, может вырабатываться не только гидравлическая и световая энергия, но также непосредственно электрическая, как это сделано Р.М.Соломянным с помощью пьезокристалла. Резонанс собственных и вынужденных колебаний различных объектов-осцилляторов, в том числе атомов и молекул, позволяет увеличить амплитуду энергообмена с окружающей средой. При этом возрастает возможность получения наибольшего количества энергии при минимальных энергозатратах на задающий генератор частоты колебаний. Так в виброрезонансном генераторе Богомолова соотношение затраченной и полученной энергий составило 1:100. Избыточная энергия на основе резонанса получена в электрогенераторах и трансформаторах Тесла, электродвигателях Мельниченко и других энергоустановках. Используются и другие виброрезонансные технологии[13].