Автор работы: Пользователь скрыл имя, 15 Января 2014 в 00:15, реферат
Акустическое воздействие на объект - это довольно сложный и интересный процесс. Например, ультразвук характеризуется большим значением интенсивности, которое можно сфокусировать в небольшом объёме. Эффект зависит от интенсивности, длительности воздействия и состояния организма. Ультразвук может влиять двумя путями: 1. Диффузное воздействие – происходит через воздух; 2. Локальное. При диффузном воздействии происходят нарушения нервной, сердечно-сосудистой и эндокринной систем, может понизиться слух, нарушаются состав и функции крови, может происходить утомление, головные боли. При контактном (локальном) воздействии нарушается капиллярный кровоток, снижается болевая чувствительность (это используется при реабилитации). Может происходить разрежение плотности костей.
1. Понятие о звуке
Звук, в широком смысле — упругие волны, распространяющиеся в какой-либо упругой среде и создающие в ней механические колебания; в узком смысле — субъективное восприятие этих колебаний специальными органами чувств животных или человека.
Как и любая волна, звук характеризуется амплитудой и спектром частот. Обычно человек слышит звуки, передаваемые по воздуху, в диапазоне частот от 16—20 Гц до 15—20 кГц. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, — ультразвуком, от 1 ГГц — гиперзвуком. Среди слышимых звуков следует также особо выделить фонетические, речевые звуки и фонемы (из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка).
Различают продольные и поперечные
звуковые волны в зависимости
от соотношения направления
Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение — звуковым давлением.
Если произвести резкое смещение частиц
упругой среды в одном месте,
например, с помощью поршня, то в
этом месте увеличится давление. Благодаря
упругим связям частиц давление передаётся
на соседние частицы, которые, в свою
очередь, воздействуют на следующие, и
область повышенного давления как
бы перемещается в упругой среде.
За областью повышенного давления следует
область пониженного давления, и,
таким образом, образуется ряд чередующихся
областей сжатия и разряжения, распространяющихся
в среде в виде волны. Каждая частица
упругой среды в этом случае будет
совершать колебательные
В жидких и газообразных средах, где
отсутствуют значительные колебания
плотности, акустические волны имеют
продольный характер, то есть направление
колебания частиц совпадает с
направлением перемещения волны. В
твёрдых телах, помимо продольных деформаций,
возникают также упругие
Колебательная скорость измеряется в м/с или см/с. В энергетическом отношении реальные колебательные системы характеризуются изменением энергии вследствие частичной её затраты на работу против сил трения и излучение в окружающее пространство. В упругой среде колебания постепенно затухают. Для характеристики затухающих колебаний используются коэффициент затухания (S), логарифмический декремент (D) и добротность (Q).
Коэффициент затухания отражает быстроту убывания амплитуды с течением времени. Если обозначить время, в течение которого амплитуда уменьшается в е = 2,718 раза, через τ, то:
.
Уменьшение амплитуды за один цикл
характеризуется
Если на колебательную систему с потерями действовать периодической силой, то возникают вынужденные колебания, характер которых в той или иной мере повторяет изменения внешней силы. Частота вынужденных колебаний не зависит от параметров колебательной системы. Напротив, амплитуда зависит от массы, механического сопротивления и гибкости системы. Такое явление, когда амплитуда колебательной скорости достигает максимального значения, называется механическим резонансом. При этом частота вынужденных колебаний совпадает с частотой собственных незатухающих колебаний механической системы.
При частотах воздействия, значительно меньших резонансной, внешняя гармоническая сила уравновешивается практически только силой упругости. При частотах возбуждения, близких к резонансной, главную роль играют силы трения. При условии, когда частота внешнего воздействия значительно больше резонансной, поведение колебательной системы зависит от силы инерции или массы.
Свойство среды проводить
Z = ρc
Удельное акустическое сопротивление измеряется в паскаль-секунда на метр (Па·с/м) или дин•с/см³ (СГС); 1 Па·с/м = 10−1 дин • с/см³.
Значение удельного
Звуковое или акустическое давление в среде представляет собой разность между мгновенным значением давления в данной точке среды при наличии звуковых колебаний и статического давления в той же точке при их отсутствии. Иными словами, звуковое давление есть переменное давление в среде, обусловленное акустическими колебаниями. Максимальное значение переменного акустического давления (амплитуда давления) может быть рассчитано через амплитуду колебания частиц:
P = 2πfρcA
где Р — максимальное акустическое давление (амплитуда давления);
На расстоянии в половину длины волны (λ/2) амплитудное значение давления из положительного становится отрицательным, то есть разница давлений в двух точках, отстоящих друг от друга на λ/2 пути распространения волны, равна 2Р.
Для выражения звукового давления в единицах СИ используется Паскаль (Па), равный давлению в один ньютон на метр квадратный (Н/м²). Звуковое давление в системе СГС измеряется в дин/см²; 1 дин/см² = 10−1Па = 10−1Н/м². Наряду с указанными единицами часто пользуются внесистемными единицами давления — атмосфера (атм) и техническая атмосфера (ат), при этом 1 ат = 0,98×106 дин/см² = 0,98×105 Н/м². Иногда применяется единица, называемая баром или микробаром (акустическим баром); 1 бар = 106 дин/см².
Давление, оказываемое на частицы
среды при распространении
Максимальные значения величин ускорения и давления, возникающие в среде при прохождении в ней ультразвуковых волн, для данной частицы не совпадают во времени. В момент, когда перепад ускорения достигает своего максимума, перепад давления становится равным нулю. Амплитудное значение ускорения (а) определяется выражением:
a = ω2A = (2πf)2A
Если бегущие ультразвуковые волны
наталкиваются на препятствие, оно
испытывает не только переменное давление,
но и постоянное. Возникающие при
прохождении ультразвуковых волн участки
сгущения и разряжения среды создают
добавочные изменения давления в
среде по отношению к окружающему
её внешнему давлению. Такое добавочное
внешнее давление носит название
давления излучения (радиационного
давления). Оно служит причиной того,
что при переходе ультразвуковых
волн через границу жидкости с
воздухом образуются фонтанчики жидкости
и происходит отрыв отдельных
капелек от поверхности. Этот механизм
нашёл применение в образовании
аэрозолей лекарственных
Скорость звука — скорость распространения звуковых волн в среде.
Как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях скорость звука меньше, чем в твёрдых телах, что связано в основном с убыванием сжимаемости веществ в этих фазовых состояниях соответственно.
В среднем, в идеальных условиях, в воздухе скорость звука составляет 340—344 м/с
Скорость звука в любой среде вычисляется по формуле:
где β — адиабатическая сжимаемость среды; ρ — плотность.
Обычно для генерации звука
применяются колеблющиеся тела различной
природы, вызывающие колебания окружающего
воздуха. Примером такой генерации
может служить использование го
Распространение ультразвука — это процесс перемещения в пространстве и во времени возмущений, имеющих место в звуковой волне.
Звуковая волна
Частицы среды, участвующие в передаче энергии волны, колеблются около положения своего равновесия. Скорость, с которой частицы колеблются около среднего положения равновесия называется колебательной скоростью. Колебательная скорость частиц изменяется согласно уравнению:
V = Usin(2πft + G),
где V — величина колебательной скорости;
Амплитуда колебательной скорости
характеризует максимальную скорость,
с которой частицы среды
U = 2πfA,
При распространении ультразвуковых волн возможны явления дифракции, интерференции и отражения.
Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковой волны сравнима (или больше) с размерами находящегося на пути препятствия. Если препятствие по сравнению с длиной акустической волны велико, то явления дифракции нет.
При одновременном движении в ткани нескольких ультразвуковых волн в определённой точке среды может происходить суперпозиция этих волн. Такое наложение волн друг на друга носит общее название интерференции. Если в процессе прохождения через биологический объект ультразвуковые волны пересекаются, то в определённой точке биологической среды наблюдается усиление или ослабление колебаний. Результат интерференции будет зависеть от пространственного соотношения фаз ультразвуковых колебаний в данной точке среды. Если ультразвуковые волны достигают определённого участка среды в одинаковых фазах (синфазно), то смещения частиц имеют одинаковые знаки и интерференция в таких условиях способствует увеличению амплитуды ультразвуковых колебаний. Если же ультразвуковые волны приходят к конкретному участку в противофазе, то смещение частиц будет сопровождаться разными знаками, что приводит к уменьшению амплитуды ультразвуковых колебаний.
Интерференция играет важную роль при
оценке явлений, возникающих в тканях
вокруг ультразвукового излучателя.
Особенно большое значение имеет
интерференция при