Автор работы: Пользователь скрыл имя, 23 Октября 2013 в 11:02, лекция
Параметри сk (k = 1, 2, ..., l) є кількісними характеристиками системи. Наприклад, якщо йдеться про таку економічну систему, як сільськогосподарське підприємство, то його параметрами є наявні ресурси (земельні угіддя, робоча сила, сільськогосподарська техніка, тваринницькі та складські приміщення), рівень урожайності сільськогосподарських культур, продуктивності тварин, норми витрат ресурсів, ціни та собівартість проміжної і кінцевої продукції, норми податків, проценти за кредит, ціни на куповані ресурси тощо.
. (2.8)
Недоліками цих двох способів є, по-перше, жорстке співвідношення між значеннями відхилень критеріїв оптимальності, що значно звужує множину допустимих планів; по-друге, одному значенню деякого критерію може відповідати множина інших, причому таких, за яких оптимальний план з економічного погляду ефективніший; по-третє, відсутня методика об’єктивного визначення коефіцієнтів .
Зведення багатокритеріальної задачі до задачі з одним критерієм може також здійснюватися через виділення з вибраного набору показників одного, який вважають найважливішим — Fk і намагаються досягти його максимального значення (якщо необхідно знайти мінімум, то досить змінити знак показника). Всі інші показники (критерії) є другорядними, і на них накладаються обмеження виду: , де є нижньою межею значення відповідного показника, або , якщо необхідно, щоб значення показника не перевищувало . Для виробничих задач можна виділити як найважливіший показник ефективності прибуток і, максимізуючи його величину, додатково вводити обмеження щодо рентабельності виробництва не нижче або собівартості не вище певного рівня. Такі обмеження входять до системи початкових умов задачі.
Останнім розглянемо так званий «метод послідовних поступок». Всі обрані критерії необхідно ранжирувати за спаданням їх важливості: спочатку головний, скажімо F1, потім менш важливий F2 і т. д. Вважатимемо, що необхідно досягти максимального значення за всіма критеріями (якщо необхідно знайти мінімум, то змінюють знак показника). Спочатку розв’язується задача з одним головним критерієм (знаходиться значення ), потім призначають деяку невелику за абсолютним значенням «поступку» , на яку можна змінити (зменшити) значення критерію задля того, щоб досягти максимального (більшого) значення за наступним критерієм F2. Величина «поступки» залежить від потрібної точності розрахунків та достовірності початкових даних. Потім до системи початкових обмежень задачі приєднують обмеження, що встановлює рівень можливого відхилення показника: , і розв’язують нову задачу з критерієм оптимальності F2 і т.д. Процес розв’язання задачі у такий спосіб показує, ціною яких «поступок» досягається бажаний результат.
Очевидно, що багатокритеріальні задачі економіко-математичного моделювання не мають універсального способу розв’язування. Отже, вибір та коректне застосування будь-якого з наведених способів залишається за суб’єктом прийняття рішень. Завдання економіко-математичного моделювання полягає в забезпеченні потрібною кількістю науково обґрунтованої інформації, на підставі якої здійснюється вибір управлінського рішення.
Математичне програмування — один із напрямків прикладної математики, предметом якого є задачі на знаходження екстремуму деякої функції за певних заданих умов.
У математичному програмуванні виділяють два напрямки — детерміновані задачі і стохастичні. Детерміновані задачі не містять випадкових змінних чи параметрів. Уся початкова інформація повністю визначена. У стохастичних задачах використовується вхідна інформація, яка містить елементи невизначеності, або деякі параметри набувають значень відповідно до визначених функцій розподілу випадкових величин. Наприклад, якщо в економіко-математичній моделі врожайності сільськогосподарських культур задані своїми математичними сподіваннями, то така задача є детермінованою. Якщо ж врожайності задані функціями розподілу, наприклад нормального з математичним сподіванням а і дисперсією D, то така задача є стохастичною.
Кожен з названих напрямків включає типи задач математичного програмування, які в свою чергу поділяються на інші класи. Схематично класифікацію задач зображено на рис.2.1 (поділ наведений для детермінованих задач, але він такий же і для стохастичних).
Рисунок 2.2 – Класифікація задач математичного програмування
Як детерміновані, так і стохастичні задачі можуть бути статичними (однокроковими) або динамічними (багатокроковими). Оскільки економічні процеси розвиваються в часі, відповідні економіко-математичні моделі мають відображати їх динаміку. Поняття динамічності пов’язане зі змінами об’єкта (явища, процесу) у часі. Наприклад, якщо йдеться про план розвитку економіки України до 2005 року, то мають бути обґрунтовані значення відповідних макроекономічних показників не лише на 2005 рік, а й на всі проміжні роки, тобто слід планувати поступовість (динаміку) розвитку народногосподарських процесів. Такий план називають стратегічним. У ньому має бути обґрунтована оптимальна (найкраща, але реальна) траєкторія розвитку народного господарства. Проте під впливом некерованих чинників фактичні показники щороку можуть відхилятися від запланованих. Тому постає необхідність коригувати кожний річний план. Такі плани називають тактичними. Вони визначаються в результаті розв’язання статичної економіко-математичної задачі.
Важливо чітко усвідомити відмінність між одно- та багатокроковими задачами. Багатокроковість як метод розв’язування задач математичного програмування зумовлюється, насамперед, багатовимірністю задачі й означає, що послідовно застосовуючи індукцію, крок за кроком знаходять оптимальні значення множини змінних, причому отриманий на кожному кроці розв’язок має задовольняти умови оптимальності попереднього розв’язку. Така процедура може бути більш чи менш тісно пов’язана з часом. Однокрокові задачі, навпаки, характеризуються тим, що всі компоненти оптимального плану задачі визначаються водночас на останній ітерації (останньому кроці) алгоритму. Потрібно розрізняти ітераційність алгоритму і його багатокроковість. Наприклад, симплекс-метод розв’язування задач лінійного програмування є ітераційним, тобто у певний спосіб дістають допустимий план і в результаті деякої кількості ітерацій визначають оптимальний план. Тут виконуються ітерації (кроки) алгоритму симплексного методу, але це не можна інтерпретувати як багатокроковість економічного процесу (явища). Деякі задачі математичного програмування можна розглядати як одно- або багатокрокові залежно від способу їх розв’язання. Якщо задачу можна розв’язувати як однокрокову, то розв’язувати її як багатокрокову недоцільно, бо в такому разі для знаходження оптимального плану необхідно застосовувати складніші методи. Проте більшість економічних процесів є динамічними, їх параметри змінюються в часі й залежать від рішень керівництва, які доводиться приймати з метою спрямування розвитку економічної системи за траєкторією, яка визначена стратегічним планом.
Задачі математичного
Оскільки в економіко-
Найпростішими з розглянутих типів є статичні, детерміновані, неперервні та лінійні задачі. Важливою перевагою таких задач є те, що для їх розв’язування розроблено універсальний метод, який називається симплексним методом. Теоретично кожну задачу лінійного програмування можна розв’язати. Для деяких типів лінійних задач, що мають особливу структуру, розробляють спеціальні методи розв’язання, які є ефективнішими. Наприклад, транспортну задачу можна розв’язати симплексним методом, але ефективнішими є спеціальні методи, наприклад, метод потенціалів.
Економічні та технологічні процеси, як правило, є нелінійними, стохастичними, розвиваються за умов невизначеності. Лінійні економіко-математичні моделі часто є неадекватними, тобто такими, що неточно описують процес, який досліджується, тому доводиться будувати стохастичні, динамічні, нелінійні моделі. Розв’язувати такі задачі набагато складніше, ніж лінійні, оскільки немає універсального методу їх розв’язання. Для окремих типів нелінійних задач розроблено спеціальні числові методи розв’язання. Проте слід зазначити, що на практиці застосовують, здебільшого, лінійні економіко-математичні моделі. Часто нелінійні залежності апроксимують (наближають) до лінійних. Такий підхід є доволі ефективним.
У нелінійному програмуванні (залежно від функцій, які використовуються в економіко-математичній моделі) виокремлюють опукле та квадратичне програмування. Задача належить до опуклого програмування у тому разі, коли цільова функція угнута, якщо вона мінімізується, та опукла, якщо вона максимізується, а всі обмеження – однотипні нерівності типу (≤) або рівняння, в яких ліві частини є опуклими функціями, а праві частини – сталими величинами. У разі обмежень типу (≥) їх ліві частини мають бути вгнутими функціями. Тоді область допустимих планів є опуклою та існує глобальний, єдиний екстремум. Квадратичне програмування – якщо цільова функція квадратична, а обмеження лінійні.
Щойно було розглянуто лише основні
типи задач математичного програмува
Складність економічних систем (явищ, процесів) як об’єктів досліджень вимагає їх ретельного вивчення з метою з’ясування найважливіших функціональних залежностей, внутрішніх взаємозв’язків між їхніми елементами. В результаті здійснюються можливі спрощення та допущення, що, очевидно, погіршує адекватність побудованих математичних моделей і є чудовим приводом для критики. Однак лише прийняття певних допущень уможливлює формалізацію будь-якої економічної ситуації.
Не існує загальних
У процесі застосування математичного моделювання в економіці чітка постановка задачі та її формалізація є найскладнішим етапом дослідження, вимагає ґрунтовних знань передусім економічної суті процесів, які моделюються. Однак, вдало створена математична модель може надалі застосовуватись для розв’язування інших задач, які не мають відношення до ситуації, що початково моделювалася. Починаючи з робіт Л.В.Канторовича, в математичному програмуванні сформовано певний набір класичних постановок задач, економіко-математичні моделі яких широко використовуються в практичних дослідженнях економічних проблем.
Наведемо кілька вже формалізованих типових постановок економічних задач, що розв’язуються методами математичного програмування (більшість сформульованих задач будуть вивчатися далі).
Всі розглянуті задачі залежно від наявності та точності початкової інформації, мети дослідження, ступеня врахування невизначеності, специфіки застосування до конкретного процесу можуть бути сформульовані як у вигляді статичних, детермінованих, неперервних лінійних задач, так і в складнішій постановці, де один, кілька чи всі параметри визначаються з певним рівнем імовірності та використовуються нелінійні залежності.
Задача визначення оптимального плану виробництва: для деякої виробничої системи (цеху, підприємства, галузі) необхідно визначити план випуску кожного виду продукції за умови найкращого способу використання наявних ресурсів. У процесі виробництва задіяний визначений набір ресурсів: сировина, трудові ресурси, технічне обладнання тощо. Відомі загальні запаси ресурсів, норми витрат кожного ресурсу та прибуток з одиниці реалізованої продукції. Задаються також за потреби обмеження на обсяги виробництва продукції у певних співвідношеннях(задана асортиментність).
Критерії оптимальності: максимум прибутку, максимум товарної продукції, мінімум витрат ресурсів.
Задача про «дієту» (або про суміш): деякий раціон складається з кількох видів продуктів. Відомі вартість одиниці кожного компонента, кількість необхідних організму поживних речовин та потреба в кожній речовині, вміст в одиниці кожного продукту кожної поживної речовини. Необхідно знайти оптимальний раціон – кількість кожного виду продукту, що враховує вимоги забезпечення організму необхідною кількістю поживних речовин.
Критерій оптимальності —
Транспортна задача: розглядається певна кількість пунктів виробництва та споживання деякої однорідної продукції (кількість пунктів виробництва та споживання не збігається). Відомі обсяги виготовленої продукції в кожному пункті виробництва та потреби кожного пункту споживання. Також задана матриця, елементи якої є вартістю транспортування одиниці продукції з кожного пункту виробництва до кожного пункту споживання. Необхідно визначити оптимальні обсяги перевезень продукції, за яких були б найкраще враховані необхідності вивезення продукції від виробників та забезпечення вимог споживачів.
Критерії оптимальності: мінімальна сумарна вартість перевезень, мінімальні сумарні витрати часу.
Задача оптимального розподілу виробничих потужностей: розглядаються кілька підприємств, що виготовляють певну кількість видів продукції. Відомі фонд робочого часу кожного підприємства; потреби в продукції кожного виду; матриця потужностей виробництва всіх видів продукції, що виготовляються на кожному підприємстві, а також собівартості виробництва одиниці продукції кожного підприємства. Необхідно розподілити виробництво продукції між підприємствами у такий спосіб, щоб задовольнити потреби у виготовленні продукції та максимально використати виробничі потужності підприємств.
Критерій оптимальності: мінімальні сумарні витрати на виготовлення продукції.
Задача про призначення: нехай набір деяких видів робіт може виконувати певна чисельність кандидатів, причому кожного кандидата можна призначати лише на одну роботу і кожна робота може бути виконана тільки одним кандидатом. Відома матриця, елементами якої є ефективності (у вибраних одиницях) кожного претендента на кожній роботі. Розв’язком задачі є оптимальний розподіл кандидатів на посади.
Критерій оптимальності: максимальний сумарний ефект від виконання робіт.
Задача комівояжера: розглядається кілька міст. Комівояжеру необхідно, починаючи з міста, в якому він перебуває, обійти, не буваючи ніде двічі, всі міста і повернутися в початкове. Відома матриця, елементи якої – вартості пересування (чи відстані) між всіма попарно пунктами подорожі. Знайти оптимальний маршрут.
Информация о работе Введення в оптимізаційні економіко-математичні моделі