Введення в оптимізаційні економіко-математичні моделі

Автор работы: Пользователь скрыл имя, 23 Октября 2013 в 11:02, лекция

Краткое описание

Параметри сk (k = 1, 2, ..., l) є кількісними характеристиками системи. Наприклад, якщо йдеться про таку економічну систему, як сільськогосподарське підприємство, то його параметрами є наявні ресурси (земельні угіддя, робоча сила, сільськогосподарська техніка, тваринницькі та складські приміщення), рівень урожайності сільськогосподарських культур, продуктивності тварин, норми витрат ресурсів, ціни та собівартість проміжної і кінцевої продукції, норми податків, проценти за кредит, ціни на куповані ресурси тощо.

Прикрепленные файлы: 1 файл

ЛК.02 - Введення в оптимізаційні економіко-математичні моделі.doc

— 668.50 Кб (Скачать документ)


  1. ОПТИМІЗАЦІЙНІ ЕКОНОМІКО-МАТЕМАТИЧНІ МОДЕЛІ

Анотація 

Постановка задачі економіко-математичного  моделювання. Приклади задач економіко-математичного моделювання. Задача визначення оптимального плану виробництва. Задача про «дієту». Транспортна задача.

2.1 Постановка задачі економіко-математичного моделювання

Подамо схематично довільну економічну систему у такому вигляді (рис.2.1):

Рисунок 2.1 –Схема економічної системи

Параметри сk (k = 1, 2, ..., l) є кількісними характеристиками системи. Наприклад, якщо йдеться про таку економічну систему, як сільськогосподарське підприємство, то його параметрами є наявні ресурси (земельні угіддя, робоча сила, сільськогосподарська техніка, тваринницькі та складські приміщення), рівень урожайності сільськогосподарських культур, продуктивності тварин, норми витрат ресурсів, ціни та собівартість проміжної і кінцевої продукції, норми податків, проценти за кредит, ціни на куповані ресурси тощо.

Частина параметрів сk для певної системи може бути сталими величинами, наприклад, норми висіву насіння сільськогосподарських культур, норми споживання тваринами кормів тощо, а частина — змінними, тобто залежатиме від певних умов, як, скажімо, урожайність сільськогосподарських культур, собівартість продукції, реалізаційні ціни на рослинницьку й тваринницьку продукцію.

Змінні величини бувають незалежними  чи залежними, дискретними чи неперервними, детермінованими або випадковими. Наприклад, залежною змінною є собівартість продукції, незалежною від процесу функціонування підприємства величиною є початковий розмір статутного фонду, дискретною – кількість корів, неперервною – площа посіву озимої пшениці, детермінованою – норма висіву насіння кукурудзи на гектар, випадковою – кількість телят, які народяться у плановому періоді.

Вхідні змінні економічної системи бувають двох видів: керовані xj (j=1,2,...,n), значення яких можна змінювати в деякому інтервалі; і некеровані змінні yi (і=1,2, ..., m), значення яких не залежать від волі людей і визначаються зовнішнім середовищем. Наприклад, обсяг придбаного пального – керована, а температура повітря – некерована змінна. Залежно від реальної ситуації керовані змінні можуть переходити у групу некерованих і навпаки. Наприклад, у разі насиченого ринку обсяги придбання дизельного палива є керованою змінною величиною, а за умов дефіциту цього ресурсу – некерованою.

Кожна економічна система  має певну мету свого функціонування. Це може бути, наприклад, отримання максимуму чистого прибутку. Ступінь досягнення мети, здебільшого, має кількісну міру, тобто може бути описаний математично.

Нехай F – вибрана мета (ціль). За цих умов вдається, як правило, встановити залежність між величиною F, якою вимірюється ступінь досягнення мети, вхідними змінними та параметрами системи:

F = f (x1, x2, ..., xn;   y1, y2, ..., ym; c1, c2, ..., cl). (2.1)

Функцію F називають цільовою функцією, або функцією мети. Для економічної системи це є функція ефективності її функціонування та розвитку, оскільки значення F відображує ступінь досягнення певної мети.

У загальному вигляді задача економіко-математичного моделювання формулюється так:

Знайти такі значення керованих змінних xj, щоб цільова функція набувала екстремального (максимального чи мінімального значення).

Отже, потрібно відшукати значення

. (2.2)

Можливості вибору xj завжди обмежені зовнішніми щодо системи умовами, параметрами виробничо-економічної системи тощо.

Наприклад, площа посіву озимої пшениці  обмежена наявністю ріллі та інших  ресурсів, сівозмінами, можливістю реалізації зерна, необхідністю виконання договірних зобов’язань тощо. Ці процеси можна описати системою математичних рівностей та нерівностей виду:

 (2.3)

Тут набір символів ( , =, ) означає, що для деяких значень поточного індексу і виконуються нерівності типу , для інших – рівності (=), а для решти – нерівності типу .

Система (2.3) називається системою обмежень, або системою умов задачі. Вона описує внутрішні технологічні та економічні процеси функціонування й розвитку виробничо-економічної системи, а також процеси зовнішнього середовища, які впливають на результат діяльності системи. Для економічних систем змінні xj мають бути невід’ємними:

. (2.4)

Залежності (2.2)—(2.4) утворюють економіко-математичну модель економічної системи. Розробляючи таку модель, слід дотримуватись певних правил:

1. Модель має адекватно описувати реальні технологічні та економічні процеси.

2. У моделі потрібно враховувати все істотне, суттєве в досліджуваному явищі чи процесі, нехтуючи всім другорядним, неістотним у ньому. Математичне моделювання — це мистецтво, вузька стежка між переспрощенням та переускладненням. Справді, прості моделі не забезпечують відповідної точності, і «оптимальні» розв’язки за такими моделями, як правило, не відповідають реальним ситуаціям, дезорієнтують користувача, а переускладнені моделі важко реалізувати на ЕОМ як з огляду на неможливість їх інформаційного забезпечення, так і через відсутність відповідних методів оптимізації.

3. Модель має бути зрозумілою для користувача, зручною для реалізації на ЕОМ.

4. Необхідно, щоб множина змінних xj була не порожньою. З цією метою в економіко-математичних моделях за змоги слід уникати обмежень типу «=», а також суперечливих обмежень. Наприклад, ставиться обмеження щодо виконання контрактів, але ресурсів недостатньо, аби їх виконати. Якщо система (2.3), (2.4) має єдиний розв’язок, то не існує набору різних планів, а отже, й задачі вибору оптимального з них.

Будь-який набір змінних x1, x2, ..., xn, що задовольняє умови (2.3) і (2.4), називають допустимим планом, або планом. Очевидно, що кожний допустимий план є відповідною стратегією економічної системи, програмою дій. Кожному допустимому плану відповідає певне значення цільової функції, яке обчислюється за формулою (2.2).

Сукупність усіх розв’язків системи  обмежень (2.3) і (2.4), тобто множина всіх допустимих планів утворює область існування планів.

План, за якого цільова функція  набуває екстремального значення, називається оптимальним. Оптимальний план є розв’язком задачі економіко-математичного моделювання (2.2)—(2.4).

Приклад 2.1. Фірма спеціалізується на виготовленні та реалізації електроплит і морозильних камер. Припустимо, що збут продукції необмежений, проте обсяги ресурсів (праці та основних матеріалів) обмежені. Завдання полягає у визначенні такого плану виробництва продукції на місяць, за якого виручка була б найбільшою.

Норми використання ресурсів та їх загальний  запас, а також ціни одиниці кожного виду продукції наведені в табл.2.1.

 

 

 

 

Таблиця 2.1 – Інформація, необхідна для складання виробничої програми

Вид  
продукції

Норми витрат на одиницю продукції

Ціна одиниці  
продукції, ум. од.

робочого часу,  
люд.-год.

листового  
заліза, м2

скла, м2

Морозильна  
камера

9,2

3

300

Електрична  
плита

4

6

2

200

Загальний запас ресурсу на місяць

520

240

40


 

Побудуємо економіко-математичну модель даної задачі. Позначимо через х1 кількість вироблених морозильних камер, а через х2 — електроплит. Виразимо математично умови, що обмежують використання ресурсів.

Виходячи з нормативів використання кожного з ресурсів на одиницю  продукції, що наведені в табл.2.1, запишемо сумарні витрати робочого часу: 9,2х1 + 4х2. За умовою задачі ця величина не може перевищувати загальний запас даного ресурсу, тобто 520 люд.-год. Ця вимога описується такою нерівністю:

Аналогічно запишемо умови щодо використання листового заліза та скла:

;

Необхідно серед множини  всіх можливих значень х1 та х2 знайти такі, за яких сума виручки максимальна, тобто: .

Отже, умови задачі, описані в  прикладі 2.1, можна подати такою економіко-математичною моделлю:

,

за умов:     ;

;

;

.

Остання умова фіксує неможливість набуття змінними від’ємних значень, тому що кількість виробленої продукції не може бути від’ємною. Розв’язавши задачу відповідним методом математичного програмування, дістаємо такий розв’язок: для максимальної виручки від реалізації продукції необхідно виготовляти морозильних камер — 50 штук, електроплит — 15 (х1 = 50, х2 = 15).

Перевіримо виконання умов задачі:

;

;

.

Всі умови задачі виконуються, до того ж оптимальний план дає змогу  повністю використати два види ресурсів з мінімальним надлишком третього.

Виручка становитиме:  ум. од.

Отриманий оптимальний план у порівнянні з першим варіантом виробничої програми уможливлює збільшення виручки на ум.од., тобто на .

Зауважимо, що в класичній постановці задачі економыко-математичного моделювання передбачається одна цільова функція, яка кількісно визначена. У реальних економічних системах на роль критерію оптимальності (ефективності) претендують кілька десятків показників. Наприклад, максимум чистого доходу від реалізації виробленої продукції чи максимум рівня рентабельності, мінімум собівартості виробленої продукції або мінімум витрат дефіцитних ресурсів. Крім того, бажаним є застосування кількох критеріїв одночасно, причому вони можуть бути взагалі несумісними. Наприклад, вимога досягти максимальної ефективності виробництва за мінімальних витрат ресурсів з погляду постановки математичної задачі є некоректною. Мінімальні витрати ресурсів – це нульові витрати, що мають місце за повної відсутності будь-якого процесу виробництва. Аналогічно максимальна ефективність може бути досягнута лише у разі використання певних обсягів (звичайно не нульових) ресурсів. Тому коректними є постановки задач такого типу: досягти максимальної ефективності при заданих витратах чи досягти заданого ефекту за мінімальних витрат.

Оскільки  не існує єдиного універсального критерію економічної ефективності, то досить часто вдаються до розгляду багатокритеріальної оптимізації. Хоча задача економіко-математичного моделювання передбачає одну цільову функцію, розроблено математичні методи, що дають змогу будувати компромісні плани, тобто здійснювати багатокритеріальну оптимізацію.

Найчастіше способи використання багатьох критеріїв у задачах економіко-математичного моделювання зводяться до штучного об’єднання кількох вибраних показників в один. Наведемо кілька таких способів.

Нехай у задачі обрано m критеріїв оптимальності Fi . Загальний критерій може мати вигляд суми окремих показників ефективності з відповідними коефіцієнтами:

, (2.5)

де  – додатні чи від’ємні коефіцієнти. Додатні коефіцієнти відповідають тим критеріям, які потрібно максимізувати, а від’ємні – тим, які мінімізуються. Абсолютні значення коефіцієнтів відповідають пріоритету (важливості) того чи іншого показника.

Наприклад, якщо розв’язується виробнича задача, то з додатними коефіцієнтами ввійдуть такі величини, як обсяг прибутку, отриманого від реалізації товарів та послуг, з від’ємними – витрати ресурсів (часу, праці), собівартість одиниці продукції.

Узагальнений критерій може подаватись у вигляді дробу, де в чисельнику знаходиться добуток показників, які необхідно максимізувати, припустимо , а в знаменнику – добуток тих, які потрібно мінімізувати :

 (2.6)

Загальним недоліком критеріїв (2.5), (2.6) є те, що існує можливість недостатню ефективність одного критерію компенсувати іншим. Наприклад, зниження значення виконання попередніх замовлень (в (2.6) буде в чисельнику) може компенсуватися зменшенням використання ресурсів (знаменник дробу (2.6)). Оскільки окремі величини в чисельнику та знаменнику пропорційно зменшилися, то значення дробу не змінюється, проте складені на основі таких розрахунків плани можуть призвести до негативних наслідків.

Такі критерії порівнюють із запропонованим Львом Толстим жартома «критерієм оцінки людини» у вигляді дробу, де в чисельнику зазначають справжні достоїнства людини, а у знаменнику – її думку про себе. Отже, якщо людина майже немає достоїнств (чисельник дробу буде малим числом) і водночас у неї зовсім відсутня зарозумілість (в знаменнику — майже нуль), то вона буде мати нескінченно велику цінність (оскільки будь-яке число, поділене на нескінченно малу величину, дає нескінченність).

Отже, до використання зазначених способів формування цільових функцій необхідно підходити зважено та продумано.

Ще один метод запропонував І.Никовський. Оптимальний план знаходять окремо за кожним з вибраних критеріїв, після чого отримують множину значень цільової функції . На останньому етапі розв’язується початкова задача з одним критерієм виду:

, (2.7)

де  – значення i-го критерію оптимальності в оптимальному компромісному плані. За такого підходу розв’язок задачі визначається за критерієм, що дорівнює мінімальному значенню модулів часток відхилень значень кожної цільової функції у компромісному плані від їх оптимальних значень у їх же оптимальних значеннях, що робить всі критерії однаково важливими. Для врахування переваг одних критеріїв над іншими доцільно застосовувати узагальнений критерій такого виду:

Информация о работе Введення в оптимізаційні економіко-математичні моделі