Понятие теории математического моделирования

Автор работы: Пользователь скрыл имя, 12 Сентября 2013 в 18:31, реферат

Краткое описание

В работе предложен основной метод последовательного решения задачи, состоящий из следующих этапов:
1) формулировка задачи;
2) накопление экспериментальных данных (в том числе, анализ возможных ошибок в системе регистрации данных, а в некоторых случаях разработка новой системы регистрации, которая будет давать соответствующие данные);
3) определение влияния рабочих параметров системы или процесса (анализ случайных колебаний процесса с целью выяснения статистической зависимости результатов от соответствующих параметров);
4) составление методики эксперимента (например, изменение параметров с целью определения фактического воздействия на результат);
5) уменьшение числа «рабочих» параметров (оставление лишь тех параметров, к изменению которых результаты наиболее чувствительны);

Содержание

Введение……………………………………………………………………..3
1. Теория управления. Основные понятия теории управления. ……
2. Понятие теории математического моделирования…………………
Заключение………………………………………………………………….
Список литературы………………………………………………………..

Прикрепленные файлы: 1 файл

автоматизация.docx

— 54.40 Кб (Скачать документ)

         На базе системного подхода может быть предложена последовательность разработки моделей, когда выделяют две основные стадии проектирования: макропроектирование и микропроектирование.

На стадии макропроектирования строится модель внешней среды, выявляются ресурсы и ограничения, выбирается модель системы и критерии для оценки адекватности.

         Стадия микропроектирования в значительной степени зависит от конкретного типа выбранной модели. В общем случае предполагает создание информационного, математического, технического и программного обеспечения системы моделирования. На этой стадии устанавливаются основные технические характеристики созданной модели, оцениваются время работы с ней и затраты ресурсов для получения заданного качества модели.

         Независимо от типа модели при ее построении необходимо руководствоваться рядом принципов системного подхода:

1) последовательное продвижение  по этапам создания модели;

2) согласование информационных, ресурсных, надежностных и других характеристик;

3) правильное соотношение  различных уровней построения  модели;

4) целостность отдельных  стадий проектирования модели.

 

 Принципы построения  математических моделей

       Рассмотрим основные принципы моделирования, отражающие опыт, накопленный к настоящему времени в области разработки и использования ММ.

1. Принцип информационной  достаточности. При полном отсутствии информации об исследуемой системе построение ее модели невозможно. При наличии полной информации о системе ее моделирование лишено смысла. Существует некоторый критический уровень априорных сведений о системе (уровень информационной достаточности), при достижении которого может быть построена ее адекватная модель.

2. Принцип осуществимости. Создаваемая модель должна обеспечивать достижение поставленной цели исследования с вероятностью, существенно отличающейся от нуля, и за конечное время.

3. Принцип множественности  моделей. Данный принцип является ключевым. Речь идет о том, что создаваемая модель должна отражать в первую очередь те свойства реальной системы (или явления), которые влияют на выбранный показатель эффективности. Соответственно при использовании любой конкретной модели познаются лишь некоторые стороны реальности. Для более полного ее исследования необходим ряд моделей, позволяющих с разных сторон и с разной степенью детальности отражать рассматриваемый процесс.

4. Принцип агрегирования. В большинстве случаев сложную систему можно представить состоящей из агрегатов (подсистем), для адекватного математического описания которых оказываются пригодными некоторые стандартные математические схемы. Принцип агрегирования позволяет, кроме того, достаточно гибко перестраивать модель в зависимости от задач исследования.

5. Принцип параметризации. В ряде случаев моделируемая система имеет в своем составе некоторые относительно изолированные подсистемы, характеризующиеся определенным параметром, в том числе векторным. Такие подсистемы можно заменять в модели соответствующими числовыми величинами, а не описывать процесс их функционирования. При необходимости зависимость значений этих величин от ситуации может задаваться в виде таблицы, графика или аналитического выражения (формулы). Принцип параметризации позволяет сократить объем и продолжительность моделирования. Однако надо иметь в виду, что параметризация снижает адекватность модели.

    Степень реализации перечисленных принципов и каждой конкретной модели может быть различной, причем это зависит не только от желания разработчика, но и от соблюдения им технологии моделирования. А любая технология предполагает наличие определенной последовательности действий

     Общая цель моделирования может быть сформулирована следующим образом: это определение (расчет) значений выбранного показателя эффективности (ПЭ) для различных стратегий проведения операции (или вариантов реализации проектируемой системы). При разработке конкретной модели цель моделирования должна уточняться с учетом используемого критерия эффективности. Для критерия пригодности модель, как правило, должна обеспечивать расчет значений ПЭ для всего множества допустимых стратегий. При использовании критерия оптимальности модель должна позволять непосредственно определять параметры исследуемого объекта, дающие экстремальное значение ПЭ.

     Таким образом, цель моделирования определяется как целью исследуемой операции, так и планируемым способом использования результатов исследования. Например, проблемная ситуация, требующая принятия решения, формулируется следующим образом: найти вариант построения вычислительной сети, который обладал бы минимальной стоимостью при соблюдении требований по производительности и по надежности. В этом случае целью моделирования является отыскание параметров сети, обеспечивающих минимальное значение ПЭ, в роли которого выступает стоимость.

    Задача может быть сформулирована иначе: из нескольких вариантов конфигурации вычислительной сети выбрать наиболее надежный. Здесь в качестве ПЭ выбирается один из показателей надежности (средняя наработка на отказ, вероятность безотказной работы и т. п.), а целью моделирования является сравнительная оценка вариантов сети по этому показателю.

     Приведенные примеры говорят о том, что сам по себе выбор показателя эффективности еще не определяет «архитектуру» будущей модели, поскольку на этом этапе не определена концептуальная модель исследуемой системы.

     В целом при решении любой задачи построения модели основную роль играют следующие четыре элемента:

1) эксперимент; 

2) модель;

3) показатели эффективности; 

4) критерии принятия решений. 

    Необходимо должным образом определить перечисленные элементы и понять их взаимосвязь, поскольку они оказывают большое влияние на проектирование системы и на планирование ее работы в целом. Критерии принятия решений позволяют выбрать наиболее эффективные параметры

системы. Обычно этот процесс  называется оптимизацией

 

Основные этапы  математического моделирования

      Первым этапом математического моделирования является постановка задачи, определение объекта и целей исследования, задание критериев (признаков) изучения объектов и управления ими. Неправильная или неполная постановка задачи может свести на нет результаты всех последующих этапов.

      Вторым этапом моделирования является выбор типа математической модели, что является важнейшим моментом, определяющим направление всего исследования. Обычно последовательно строится несколько моделей. Сравнение результатов их исследования с реальностью позволяет установить наилучшую из них. На этапе выбора типа математической модели при помощи анализа данных поискового эксперимента устанавливаются: линейность или нелинейность, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса.

       Процесс выбора математической модели объекта заканчивается ее предварительным контролем, который также является первым шагом на пути к исследованию модели. При этом осуществляются следующие виды контроля (проверки): размерностей; порядков; характера зависимостей; экстремальных ситуаций; граничных условий; математической замкнутости; физического смысла; устойчивости модели.

       Контроль размерностей сводится к проверке выполнения правила, согласно которому приравниваться и складываться могут только величины одинаковой размерности.

        Контроль порядков величин направлен на упрощение модели. При этом определяются порядки складываемых величин и явно малозначительные слагаемые отбрасываются.

       Анализ характера зависимостей сводится к проверке направления и скорости изменения одних величин при изменении других. Направления и скорость, вытекающие из ММ, должны соответствовать физическому смыслу задачи.

       Анализ экстремальных ситуаций сводится к проверке наглядного смысла решения при приближении параметров модели к нулю или бесконечности.

      Контроль граничных условий состоит в том, что проверяется соответствие ММ граничным условиям, вытекающим из смысла задачи. При этом проверяется, действительно ли граничные условия поставлены и учтены при построении искомой функции и что эта функция на самом деле удовлетворяет таким условиям.

      Анализ математической замкнутости сводится к проверке того, что ММ дает однозначное решение.

      Анализ физического смысла сводится к проверке физического содержания промежуточных соотношений, используемых при построении ММ.

      Проверка устойчивости модели состоит в проверке того, что варьирование исходных данных в рамках имеющихся данных о реальном

объекте не приведет к существенному изменению решения.

 

 Заключительние

 

       Роль, которую играет математическое моделирование, безусловно, зависит от характера рассматриваемой задачи, мастерства экспериментатора, располагаемого времени и отпущенных средств, а также от выбранной модели. Необходимо постоянно иметь в виду первоначальную задачу. Самая распространенная ошибка связана с тем, что теряется из виду основная цель. Другой ошибкой является переход к моделированию при отсутствии достаточного количества данных о поведении системы в прошлом.

        В  работе предложен основной метод последовательного решения задачи, состоящий из следующих этапов:

1) формулировка задачи;

2) накопление экспериментальных  данных (в том числе, анализ  возможных ошибок в системе  регистрации данных, а в некоторых  случаях разработка новой системы  регистрации, которая будет давать  соответствующие данные);

3) определение влияния  рабочих параметров системы или  процесса (анализ случайных колебаний  процесса с целью выяснения  статистической зависимости результатов  от соответствующих параметров);

4) составление методики  эксперимента (например, изменение  параметров с целью определения  фактического воздействия на  результат);

5) уменьшение числа «рабочих»  параметров (оставление лишь тех  параметров, к изменению которых  результаты наиболее чувствительны);

6) выяснение ограничений,  свойственных методу.

       Одной из основных ошибок при математическом моделировании является стремление к искажению реальных условий, т. е. условий, наблюдаемых в естественной или технической системе. Эти искажения часто делаются для того, чтобы воспользоваться определенной, уже созданной для другой цели моделью. Такой порядок неразумен, даже если он кажется целесообразным. В отличие от таких типовых методов, как, например, методы линейного программирования, математическое моделирование требует применения довольно утомительных операций, поскольку в данном случае необходимо выводить специальные математические уравнения, адекватно описывающие рассматриваемую реальную систему.

       Задача экспериментатора не ограничивается построением модели. После разработки модели в нее необходимо ввести определенную информацию, чтобы проверить, насколько приближаются воспроизводимые ею данные к ранее зарегистрированным экспериментальным данным, которые соответствуют введенной информации. Лишь в том случае, когда воспроизводимые данные достаточно близки к исходной информации, можно будет гарантировать определенный успех при использовании модели для экспериментирования.

 


Информация о работе Понятие теории математического моделирования