Автор работы: Пользователь скрыл имя, 07 Ноября 2013 в 20:38, курсовая работа
Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.
Введение ………………………………………………………………………...
Глава 1. Моделирование как метод научного познания…………….………..3
Особенности применения метода математического моделирования в экономике…………………………………………………………………6
Классификация экономико-математических моделей…………………7
Этапы экономико-математического моделирования…………………10
Глава 2. Симплексный метод оптимальных продаж …………………………14
2.1 Расчеты оптимальных продаж элементов компьютерной продукции.23
2.2 Алгоритм задачи…………………………………………………………24
Глава 3.Транспортная задача……………………………………………………25
3.1 Постановка задачи………………………………………………………25
3.2 Алгоритм решения транспортной задачи................................................27
Заключение……………………………………………………………………31
Литература……………………………………………………………………32
Довольно самостоятельными областями исследований становятся подготовка и обработка экономической информации и разработка математического обеспечения экономических задач (создание баз данных и банков информации, программ автоматизированного построения моделей и программного сервиса для экономистов-пользователей). На этапе практического использования моделей ведущую роль должны играть специалисты в соответствующей области экономического анализа, планирования, управления. Главным участком работы экономистов-математиков остается постановка и формализация экономических задач и синтез процесса экономико-математического моделирования.
Глава II
2.2 Симплексный метод
Математическое
Линейное программирование
- это раздел математического
Задачу линейного
при условии :
a11 x1 + a12 x2 + . . . + a1n xn £ b1 ;
a21 x1 + a22 x2 + . . . + a2n xn £ b2 ;
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1 x1 + am2 x2 + . . . + amn xn £ bm ;
x1 ³ 0, x2 ³ 0, . . . , xn ³ 0 .
Эти ограничения называются условиями неотрицательности. Если все ограничения заданы в виде строгих равенств, то данная форма называется канонической.
В матричной форме задачу линейного программирования записывают следующим образом. Найти max cT x
при условии
A x £ b ;
x ³ 0 ,
где А - матрица ограничений размером ( m´n), b(m´1) - вектор-столбец свободных членов, x(n ´ 1) - вектор переменных, сТ = [c1, c2, ... , cn ] - вектор-строка коэффициентов целевой функции.
Решение х0 называется оптимальным, если для него выполняется условие сТ х0 ³ сТ х , для всех х Î R(x).
Поскольку min f(x) эквивалентен max [ - f(x) ] , то задачу линейного программирования всегда можно свести к эквивалентной задаче максимизации.
Для решения задач данного типа применяются методы:
1) графический;
2) табличный ( прямой, простой ) симплекс - метод;
3) метод искусственного базиса;
4) модифицированный симплекс - метод;
5) двойственный симплекс - метод.
Табличный симплекс - метод
Для его применения необходимо, чтобы знаки в ограничениях были вида “ меньше либо равно ”, а компоненты вектора b - положительны.
Алгоритм решения сводится к следующему :
Приведение системы
ограничений к каноническому
виду путём введения
Если в исходной
системе ограничений
искусственные переменные, которые так же вводятся и в целевую функцию со знаками, определяемыми типом оптимума.
Формируется симплекс-таблица.
Рассчитываются симплекс-
Принимается решение об окончании либо продолжении счёта.
При необходимости выполняются итерации.
На каждой итерации определяется вектор, вводимый в базис, и вектор, выводимый из базиса. Таблица пересчитывается по методу Жордана-Гаусса или каким-нибудь другим способом.
Метод искусственного базиса
Данный метод решения применяется при наличии в ограничении знаков “ равно ”, “ больше либо равно ”, “ меньше либо равно ” и является модификацией табличного метода. Решение системы производится путём ввода искусственных переменных со знаком, зависящим от типа оптимума, т.е. для исключения из базиса этих переменных последние вводятся в целевую функцию с большими отрицательными коэффициентами m , а в задачи минимизации - с положительными m . Таким образом из исходной получается новая m - задача.
Если в оптимальном решении m - задачи нет искусственных переменных, это решение есть оптимальное решение исходной задачи. Если же в оптимальном решении m - задачи хоть одна из искусственных переменных будет отлична от нуля, то система ограничений исходной задачи несовместна и исходная задача неразрешима.
Модифицированный симплекс – метод
В основу данной разновидности симплекс-метода положены такие особенности линейной алгебры , которые позволяют в ходе решения задачи работать с частью матрицы ограничений. Иногда метод называют методом обратной матрицы.
В процессе работы алгоритма происходит спонтанное обращение матрицы ограничений по частям, соответствующим текущим базисным векторам. Указанная способность делает весьма привлекательной машинную реализацию вычислений вследствие экономии памяти под промежуточные переменные и значительного сокращения времени счёта. Хорош для ситуаций, когда число переменных n значительно превышает число ограничений m.
В целом, метод отражает традиционные черты общего подхода к решению задач линейного программирования, включающего в себя канонизацию условий задачи, расчёт симплекс-разностей, проверку условий оптимальности, принятие решений о коррекции базиса и исключение Жордана-Гаусса.
Особенности заключаются в наличии двух таблиц - основной и вспомагательной, порядке их заполнения и некоторой специфичности расчётных формул.
Постановка задачи
Для производства
двух видов изделий А и В
используется три типа
На изготовление всех изделий администрация предприятия может предоставить оборудование 1-го типа не более, чем на t1 , оборудование 2-го типа не более, чем на t2 , оборудование 3-го типа не более, чем на t3 часов.
Прибыль от реализации единицы готового изделия А составляет a рублей, а изделия В - b рублей.
Составить план производства изделий А и В, обеспечивающий максимальную прибыль от их реализации. Решить задачу простым симплекс-методом. Дать геометрическое истолкование задачи, используя для этого её формулировку с ограничениями-неравенствами.
а1 = 1 b1 = 5 t1 = 10 a = 2
а2 = 3 b2 = 2 t2 = 12 b = 3
а3 = 2 b3 = 4 t3 = 10
Разработка и описание алгоритма решения задачи
Построение математической модели задачи
На произв-во изделия А, часов |
На произв-во изделия B, часов |
Предпр-е предоставит, часов | |
Оборуд-е 1го типа |
1 |
5 |
10 |
Оборуд-е 2го типа |
3 |
2 |
12 |
Оборуд-е 3го типа |
2 |
4 |
10 |
Прибыль от реализации, за ед. изд-я |
2 |
3 |
Построение математической модели осуществляется в три этапа :
1. Определение переменных,
для которых будет
Так как требуется определить план производства изделий А и В, то переменными модели будут:
x1 - объём производства изделия А, в единицах;
x2 - объём производства изделия В, в единицах.
2. Формирование целевой функции.
Так как прибыль от реализации единицы готовых изделий А и В известна, то общий доход от их реализации составляет 2x1 + 3x2 ( рублей ). Обозначив общий доход через F, можно дать следующую математическую формулировку целевой функции : определить допустимые значения переменных x1 и x2 , максимизирующих целевую функцию F = 2x1 + 3x2 .
3. Формирование системы ограничений.
При определении
плана производства продукции
должны быть учтены
x1 + 5x2 £ 10 ; 3x1 + 2x2 £ 12 ; 2x1 + 4x2 £ 10 .
Так как объёмы
производства продукции не
x1 ³ 0 ; x2 ³ 0 .
Таким образом, математическая модель задачи представлена в виде : определить план x1 , x2 , обеспечивающий максимальное значение функции :
max F = max ( 2x1 + 3x2 )
при наличии ограничений :
x1 + 5x2 £ 10 ;
3x1 + 2x2 £ 12 ;
2x1 + 4x2 £ 10 .
x1 ³ 0 ; x2 ³ 0 .
3.2 Решение задачи вручную
Табличный метод ещё называется метод последовательного улучшения оценки. Решение задачи осуществляется поэтапно.
1. Приведение задачи к форме :
x1 + 5x2 £ 10 ;
3x1 + 2x2 £ 12 ;
2x1 + 4x2 £ 10 .
x1 ³ 0 ; x2 ³ 0 .
2. Канонизируем систему ограничений :
x1 + 5x2 + x3 = 10 ;
3x1 + 2x2 + x4 = 12 ;
2x1 + 4x2 + x5 = 10 .
x1 ³ 0 ; x2 ³ 0 .
A1 A2 A3 A4 A5 A0
3. Заполняется исходная
симплекс-таблица и
d0 = - текущее значение целевой функции
di = - расчёт симплекс-разностей, где j = 1..6 .
C |
2 |
3 |
0 |
0 |
0 | ||
Б |
Cб |
A0 |
A1 |
A2 |
A3 |
A4 |
A5 |
A3 |
0 |
10 |
1 |
5 |
1 |
0 |
0 |
A4 |
0 |
12 |
3 |
2 |
0 |
1 |
0 |
A5 |
0 |
10 |
2 |
4 |
0 |
0 |
1 |
d |
0 |
-2 |
-3 |
0 |
0 |
0 |
Так как при решении задачи на max не все симплекс-разности положительные, то оптимальное решение можно улучшить.
4. Определяем направляющий столбец j*. Для задачи на max он определяется минимальной отрицательной симплекс-разностью. В данном случае это вектор А2
5. Вектор i*, который нужно вывести из базиса, определяется по отношению :
min при аi j > 0
В данном случае сначала это А3 .
5. Заполняется новая симплекс-таблица по исключеню Жордана - Гаусса :
а). направляющую строку i* делим на направляющий элемент :
a i j = a i j / a i j , где j = 1..6
б). преобразование всей оставшейся части матрицы :
a ij = aij - a i j × aij , где i ¹ i* , j ¹ j*
В результате преобразований получаем новую симплекс-таблицу :
C |
2 |
3 |
0 |
0 |
0 | ||
Б |
Cб |
A0 |
A1 |
A2 |
A3 |
A4 |
A5 |
A2 |
3 |
2 |
1/5 |
1 |
1/5 |
0 |
0 |
A4 |
0 |
8 |
13/5 |
0 |
-2/5 |
1 |
0 |
A5 |
0 |
2 |
6/5 |
0 |
-4/5 |
0 |
1 |
d |
6 |
-7/5 |
0 |
3/5 |
0 |
0 |
Информация о работе Моделирование производственных и экономических процессов