Автор работы: Пользователь скрыл имя, 23 Декабря 2010 в 17:04, курсовая работа
Цель данной работы - анализ таблиц межотраслевого баланса, их представления в статическом и динамическом виде, а также возможностей практического применения. Для этого одна из глав посвящена вычислительным аспектам решения задач на основе модели межотраслевого баланса.
Введение 3
1 Межотраслевой баланс как вид экономико-математических моделей 5
1.1 Экономико-математические модели: сущность и виды 5
1.2 Межотраслевой баланс: общая характеристика 8
1.3 Общая структура межотраслевого баланса 13
2 Модели межотраслевого баланса 17
2.1 Статическая модель МОБ 17
2.2 Динамическая модель экономики типа "затраты-выпуск" 20
3 Пример расчёта межотраслевого баланса 24
3.1 Построение межотраслевого баланса производства и распределения
продукции 24
3.2 Построение межотраслевого баланса затрат труда 27
Заключение 29
Список использованных источников и литературы 30
Основы анализа межотраслевых связей были заложены в процессе составления первого баланса народного хозяйства СССР за 1923-1924гг. Математическая модель межотраслевого баланса была разработана В. Леонтьевым.
Межотраслевой баланс может быть разработан как в денежном, так и в натуральном выражении.
Схема межотраслевого баланса представляет собой синтез двух таблиц, одна из которых характеризует детальную структуру затрат на производство в разрезе отдельных видов продукции, а другая – структуру распределения продукции в народном хозяйстве.
Основной вклад В.В.Леонтьева в мировую науку и практику регулирования экономики связан с разработками моделей межотраслевого баланса. Среди них можно выделить:
Наиболее простой формой модели межотраслевого баланса является статическая модель. Она формируется на основе достаточно простой системы исходных предпосылок, среди которых наиболее важную роль играет предпосылка о чистых отраслях, производящих только один вид продукции и предположение о линейной зависимости между затратами и выпуском продукции.
Можно отметить две основных принципиальных особенности модели межотраслевого баланса, вытекающих из этих условий.
Во-первых, балансовая модель
Во-вторых, поскольку при построении и анализе модели межотраслевого баланса не учитываются не воспроизводимые ресурсы, то результаты расчетов по данной модели и выполненные прогнозы могут приводить к совершенно нереальным, завышенным оценкам развития экономики. Это, в свою очередь, требует с практической точки зрения учета ограничений на эти ресурсы и дополнительного обоснования на основе параметров моделей макроэкономического планирования и прогнозирования.
Данная система предпосылок относится к статической схеме модели межотраслевого баланса, который составляется на один период. Длительность этого периода может быть различной в зависимости от целей формируемого баланса.
Балансовые модели можно разделить на:
Плановые межотраслевые балансы составляются на основе планируемых или прогнозируемых показателей. Основная цель такой модели – обосновать прогноз развития экономики страны или отдельных регионов на выбранный период планирования.
Отчетные балансы составляются на основе итоговых отчетных показателей развития страны или регионов с целью определить, насколько сбалансировано развивалась экономика и в чем состоят возникающие диспропорции в развитии тех или иных отраслей [4].
Модель межотраслевого баланса имеет следующее достоинства:
Однако у модели межотраслевого баланса имеются также и недостатки:
Модель межотраслевого баланса является однопериодной и не учитывает изменения технологии производства в течение этого периода.
Некоторые
из указанных недостатков
Суть межотраслевого баланса состоит в построении таблицы, в которой по вертикали показываются материальные затраты на производство продукции отдельной отрасли, а также прибыль. Данные по горизонтали показывают, на какую сумму (или какое количество продукции) передано продукта в другие отрасли народного хозяйства на производственные нужды (промежуточный продукт), а также конечное потребление продукции отрасли, на накопление, возмещение, выбытия и капитальный ремонт и также экспортно-импортное сальдо. Межотраслевой баланс детально отражает производственные и хозяйственные связи отраслей. Составляется в денежной и натуральной форме. Главными показателями межотраслевого баланса являются: коэффициенты полных затрат, характеризующие затраты какого-либо продукта на производство единицы другого продукта по всей цепочке взаимосвязанных отраслей; коэффициенты прямых затрат (средняя величина затрат по отрасли в целом).
Межотраслевой
баланс имеет важное значение для
науки и практики, т. к. позволяет
от общей характеристики экономических
процессов перейти к их конкретному
количественному анализу (соотношение
ВВП и национального дохода, I
и II подразделения общественного производства,
взаимосвязи промышленности и сельского
хозяйства и т. д.) [3].
1.3
Общая структура межотраслевого
баланса
Центральным элементом матричных моделей является так называемый межотраслевой баланс. Он представляет собой таблицу, характеризующую связи между различными отраслями экономики страны. Общая структура межотраслевого баланса представлена в таблице 1.
Таблица 1.Общая структура межотраслевого баланса
Производственная сфера экономики представлена в балансе в виде совокупности n отраслей.
Баланс состоит из четырех разделов (квадрантов).
Первый квадрант представляет собой матрицу, состоящую из (n+1) строки и (n+1) столбца. Этот раздел является важнейшей частью баланса, поскольку именно здесь содержится информация о межотраслевых связях. Величина , находящаяся на пересечении i-й строки и j-го столбца, показывает, сколько продукции i-й отрасли было использовано в процессе материального производства j-й отрасли. Величины характеризуют межотраслевые поставки сырья, материалов, топлива и энергии, обусловленные производственной деятельностью.
В i-й строке величины , , ..., , ..., описывают распределение продукции i-й отрасли как средства производства для других отраслей.
Величины , , ..., , ..., j-го столбца в этом случае будут описывать потребление j-й отраслью сырья, материалов, топлива и энергии на производственные нужды.
Таким образом, первый раздел баланса дает общую картину распределения продукции на текущее производственное потребление всех n отраслей материального производства.
В зависимости от того, в каких единицах измеряются потоки продукции в балансе, существуют различные его варианты: в натуральном выражении, в денежном (стоимостном) выражении, в натурально-стоимостном, в трудовых измерителях. Мы рассмотрим баланс в стоимостном выражении, в котором потоки продукции измеряются на основе стоимости произведенной продукции в некоторых фиксированных ценах. Поскольку в этом случае величины отражают стоимость продукции, т.е. измеряются в одних и тех же единицах, их можно просуммировать [1].
Величина представляет собой сумму всех поставок i-й отрасли другим отраслям.
Сумма по столбцу характеризует производственные затраты j-й отрасли на приобретение продукции других отраслей.
На пересечении (n+1)-й строки и (n+1)-го столбца находится величина - так называемый промежуточный продукт экономики.
Второй раздел посвящен конечному продукту. Столбец конечного продукта - (n+2)-й столбец. Величина - потребление продукции i-й отрасли, не идущее на текущие производственные нужды. В конечную продукцию, как правило, включаются: накопление, возмещение выбытия основных средств, прирост запасов, личное потребление населения, расходы на содержание государственного аппарата, здравоохранение, оборону и т.д., а также сальдо экспорта и импорта.
Ко
второму разделу относится
Третий квадрант межотраслевого баланса отражает стоимостную структуру валового продукта отраслей. В (n+2)-й строке таблицы отражена условно чистая продукция ( ), представляющая собой разницу между величиной валовой продукции отрасли и суммарными затратами отрасли:
Условно чистая продукция подразделяется на амортизационные отчисления и чистую продукцию отрасли. Важнейшими составляющими чистой продукции отрасли являются заработная плата, прибыль и налоги.
Можно показать, что суммарный конечный продукт равен суммарной условно чистой продукции
Из соотношений (1) и (2):
Просуммируем первое равенство по i, а второе - по j:
Левые части выражений равны, значит равны и правые:
Откуда
что и требовалось доказать.
Таким образом, в третьем разделе также фигурирует конечный продукт, но если во втором разделе он разбивается на величины характеризующие структуру потребления, то в третьем разделе величины показывают, в каких отраслях произведена стоимость конечного продукта.