Автор работы: Пользователь скрыл имя, 06 Апреля 2012 в 17:43, курсовая работа
Пусть рассматривается экономическая система, состоящая из n взаимосвязанных отраслей производства. Продукция каждой отрасли частично идет на внешнее потребление ( конечный продукт ), а частично используется в качестве сырья, полуфабрикатов или других средств производства в других отраслях, в том числе и в данной. Эту часть продукции называют производственным потреблением. Поэтому каждая из рассматриваемых отраслей выступает и как производитель продукции ( первый столбец таблицы 1 ) и как ее потребитель ( первая строка таблицы 1 ).
ЛИНЕЙНАЯ БАЛАНСОВАЯ МОДЕЛЬ
Пусть рассматривается экономическая
система, состоящая из n взаимосвязанных отраслей производства.
Продукция каждой отрасли частично идет
на внешнее потребление ( конечный продукт
), а частично используется в качестве
сырья, полуфабрикатов или других средств
производства в других отраслях, в том
числе и в данной. Эту часть продукции
называют производственным потреблением.
Поэтому каждая из рассматриваемых отраслей
выступает и как производитель продукции
( первый столбец таблицы 1 ) и как ее потребитель
( первая строка таблицы 1 ).
Обозначим через xi валовый выпуск продукции i-й отрасли за планируемый период и через yi – конечный продукт, идущий на внешнее для рассматриваемой системы потребление ( средства производства других экономических систем, потребление населения, образование запасов и т.д. ).
Таким образом, разность xi - yi составляет часть продукции i-й отрасли, предназначенную для внутрипроизводственного потребления. Будем в дальнейшем полагать, что баланс составляется не в натуральном, а в стоимостном разрезе.
Обозначим через xik часть продукции i-й отрасли, которая потребляется k-й отраслью, для обеспечения выпуска ее продукции в размере хk.
Таблица 1
№ отрас. |
потребление |
итого |
конечный |
вал овый | |||||
1 |
2 |
… |
k |
… |
n | ||||
1 |
х11 |
х12 |
... |
х1k |
... |
х1n |
е х1k |
y1 |
х1 |
2 |
х21 |
х22 |
... |
х2k |
... |
х2n |
е х2k |
y2 |
х2 |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
i |
хi1 |
хi2 |
... |
хik |
... |
хin |
е хik |
yi |
хi |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
n |
хn1 |
хn2 |
... |
хnk |
... |
хnn |
е хnk |
yn |
хn |
итого |
е хil |
е хi2 |
... |
е хnl |
... |
е хin |
|
Очевидно, величины, расположенные
в строках таблицы 1 связаны следующими
балансовыми равенствами :
х1 - ( х11 + х12 + … + х1n ) = у1
х2 - ( х21 + х22 + … + х2n ) = у2 333 ( 1 )
. . . . . . . . . . . . . . . . . . . . . . . . .
xn - ( xn1 + xn2 + … + xnn ) = yn
Одна из задач балансовых исследований заключается в том, чтобы на базе данных об исполнение баланса за предшествующий период определить исходные данные на планируемый период.
Будем снабжать штрихом ( х'ik , y'i и т.д. ) данные, относящиеся к истекшему периоду, а теми же буквами, но без штриха – аналогичные данные, связанные с планируемым периодом. Балансовые равенства ( 1 ) должны выполняться как в истекшем, так и в планируемом периоде.
Будем называть совокупность значений y1 , y2 , … , yn , характеризующих выпуск конечного продукта, ассортиментным вектором :
_
у = ( у1 , у2 , … , yn ) , 333 ( 2 )
а совокупность значений x1 , x2 , … , xn ,определяющих
валовый выпуск всех отраслей – вектор-планом
:
_
x = ( x1 , x2 , … , xn ). 333 ( 3 )
Зависимость между двумя этими векторами
определяется балансовыми равенствами
( 1 ). Однако они не дают возможности определить
по заданному, например, вектор у необходимый
для его обеспечения вектор-план х, т.к. кроме искомых
неизвестных хk , содержат n2 неизвестных xik , которые в
свою очередь зависят от xk.
Поэтому преобразуем эти равенства. Рассчитаем величины aik из соотношений :
33333 xik
aik = ––– ( i , k = 1 , 2 , … , n ).
33333xk
Величины aik называются коэффициентами прямых затрат или технологическими коэффициентами. Они определяют затраты продукций i-й отрасли, используемые k-й отраслью на изготовление ее продукции, и зависят главным образом от технологии производства в этой k-й отрасли. С некоторым приближением можно полагать, что коэффициенты aik постоянны в некотором промежутке времени, охватывающим как истекший, так и планируемый период, т.е., что
x'ik 333 xik
––– = ––– = aik = const 333 ( 4 )
x'k 333 xk
Исходя из этого предложения имеем
xik = aikxk , 333 ( 5 )
т.е. затраты i-й отрасли в k-ю отрасль пропорциональны ее валовому
выпуску, или, другими словами, зависят
линейно от валового выпуска xk. Поэтому равенство ( 5 ) называют
условием линейности прямых затрат.
Рассчитав коэффициенты прямых затрат aik по формуле ( 4 ), используя данные об исполнении баланса за предшествующий период либо определив их другим образом, получим матрицу
333 a11 a12 … a1k … a1n
333 a21 a22 … a2k … a2n
A= ………………….
333 ai1 ai2 … aik … ain
333 an1 an2 … ank … ann
которую называют матрицей затрат. Заметим, что все элементы aik этой матрицы неотрицательны. Это записывают сокращено в виде матричного неравенства А>0 и называют такую матрицу неотрицательной.
Заданием матрицы А определяются все внутренние взаимосвязи между производством и потреблением, характеризуемые табл.1
Подставляя значения xik = aik = xk во все уравнения системы ( 1 ), получим линейную балансовую модель :
x1 - ( a11x1 + a12x2 + … + a1nxn ) = y1
x2 - ( a21x1 + a22x2 + … + a2nxn ) = y2 ( 6 )
……………………………………
xn - ( an1x1 + an2x2 + … + annxn ) = yn ,
характеризующую баланс затрат - выпуска продукции, представленный в табл.1
Система уравнений ( 6 ) может быть записана компактнее, если использовать матричную форму записи уравнений:
3 _ 33 _ 33 _
Е·х - А·х = У , или окончательно
33333333 _ 3 _
( Е - А )·3х = У , ( 6' )
где Е – единичная матрица n-го порядка и
33333 1-a11 -a12 … -a1n
E - A= -a21 1-a22 … -a2n
333333 …………………
333333 -an1 -an2 … 1-ann
Уравнения ( 6 ) содержат 2n переменных ( xi и yi ). Поэтому, задавшись значениями n переменных, можно из системы ( 6 ) найти остальные n - переменных.
Будем исходить из
заданного ассортиментного
Проиллюстрируем вышеизложенное на примере предельно упрощенной системы, состоящей из двух производственных отраслей:
Табл. 2
|
Потребление
|
Итого затрат |
Конечный продукт |
Валовый продукт | ||||||||||||||||
1 |
|
260 |
240 |
500 | ||||||||||||||||
2 |
|
315 |
85 |
400 | ||||||||||||||||
Итого затрат в k-ю отрасль … |
|
|
|
|
Пусть исполнение баланса за предшествующий период характеризуется данными, помещенными в табл.2
Рассчитываем по данным этой таблицы коэффициенты прямых затрат:
100 160 275 40 а11 = –––– = 0.2 ; а12 = –––– = 0.4 ; а21 = –––– = 0.55 ; а22 = –––– = 0.1 500 400 500 400
Эти коэффициенты записаны в табл.2 в углах соответствующих клеток.
Теперь может быть записана балансовая модель ( 6 ), соответствующая данным табл.2
х1 - 0.2х1 - 0.4х2 = у1
х2 - 0.55х1 - 0.1х2 = у2
Эта система двух уравнений может быть
использована для определения х1 и х2 при заданных значениях у1 и у2, для использования влияния на
валовый выпуск любых изменений в ассортименте
конечного продукта и т.д.
Так, например, задавшись у1=240 и у2=85, получим
х1=500 и х2=400, задавшись у1=480 и у2=170, получим
х1=1000 и х2=800 и т.д.
РЕШЕНИЕ
БАЛАНСОВЫХ УРАВНЕНИЙ
С ПОМОЩЬЮ ОБРАТНОЙ МАТРИЦЫ.
КОЭФФИЦИЕНТЫ ПОЛНЫХ ЗАТРАТ.
Вернемся снова к рассмотрению балансового уравнения ( 6 ).
Первый вопрос, который возникает при его исследование, это вопрос о существование при заданном векторе У>0 неотрицательного решения х>0, т.е. о существовании вектор-плана, обеспечивающего данный ассортимент конечного продукта У. Будем называть такое решение уравнения ( 6' ) допустимым решением.
Заметим, что при любой неотрицательной матрице А утверждать существование неотрицательного решения нельзя.
Так, например, если
0.9
0.8 0.1 -0.8 А= , то Е - А =
0.6 0.9 -0.6 0.1
и уравнение ( 6' ) запишется в виде
0.1 -0.8 х1 у1
-0.6 0.1 х2 у2
или в развернутой форме
0.1х1 - 0.8х2 = у1 ( a )
-0.6х1 + 0.1х2 = у2
Сложив эти два уравнения почленно, получим
уравнение
-0.5х1 - 0.7х2 = у1 + у2,
которое не может удовлетворяться неотрицательным
значениям х1 и х2, если только у1>0 и у2>0 ( кроме
х1=х2=0 при у1=у2=0 ).
Наконец уравнение вообще может не иметь решений ( система ( 6 ) – несовместная ) или иметь бесчисленное множество решений ( система ( 6 ) – неопределенная ).
Следующая теорема, доказательство которой мы опускаем, дает ответ на поставленный вопрос.
Теорема. Если существует хоть один неотрицательный вектор х>0, удовлетворяющий неравенству ( Е - А )·х>0, т.е. если уравнение ( 6' ) имеет неотрицательное решение x>0, хотя бы для одного У>0, то оно имеет для любого У>0 единственное неотрицательное решение.
При этом оказывается, что обратная матрица ( Е - А ) будет обязательно неотрицательной.
Из способа образования
матрицы затрат следует, что для
предшествующего периода
Обозначив обратную матрицу ( Е - А )-1 через S = || sik+ ||, запишем решение уравнения ( 6'' ) в виде
_ _
х = S·У ( 7 )
Если будет задан вектор – конечный продукт У
и вычислена матрица S = ( E - A )-1, то по этой
формуле может быть определен вектор-план х.
Решение ( 7 ) можно представить в развернутой форме:
x1 = S11y1 + S12y2 + … + S1nyn
x2 = S21y1 + S22y2 + … + S2nyn 33333( 8 )
………………………………
xn = Sn1y1 + Sn2y2 + … + Snnyn
ПОЛНЫЕ ВНУТРИПРОИЗВОДСТВЕННЫЕ
ЗАТРАТЫ.
Выясним экономический смысл элементов Sik матрицы S.
Пусть производится только единица конечного продукта 1-й отрасли, т.е.
1
_ 0
У1 = :
0
Подставляя этот вектор в равенство ( 7 ), получим
1 S11
_ 0 S21 _
х = S : = : = S1
0 Sn1
задавшись ассортиментным вектором,
0
_ 1
У2 = 0
:
0
получим
0 S12
_ 1 S22 _
х = S : = : = S2
0 Sn2
Аналогично, валовый выпуск х, необходимый для производства единицы конечного продукта k-й отрасли, составит
0 S1k
_ : S2k _
х = S 1 = : Sk55555 ( 9 )
: Snk
0
Из равенства ( 9 ) вытекает следующее:
Чтобы выпустить только единицу конечного продукта k-й отрасли, необходимо в 1-й отрасли выпустить х1=S1k, во 2-й х2=S2k и т.д., в i-й отрасли выпустить xi=Sik и, наконец, в n-й отрасли выпустить xn=Snk единиц продукции.
Так при этом виде конечного продукта производства только единица k-го продукта, то величины S1k, S2k, …, Sik, …, Snk, представляют собой коэффициенты полных затрат продукции 1-й, 2-й и т.д., n-й отраслей идущей на изготовление указанной единицы k-го продукта. Мы уже ввели раннее коэффициенты прямых затрат a1k, a2k, …, aik, …, ank на единицу продукции k-й отрасли, которые учитывали лишь ту часть продукции каждой отрасли, которая потребляется непосредственно k-й отраслью. Но, очевидно, необходимо обеспечить замкнутый производственный цикл. Если бы продукция i-й отрасли поступала бы только в k-ю отрасль в количестве aik, то производство k-й отрасли все равно не было бы обеспеченно, ибо потребовалось еще продукты 1-й отрасли ( a1k ), 2-й отрасли (a2k ) и т.д. А они в свою очередь не смогут работать, если не будут получать продукцию той же i-й отрасли ( ai1, ai2, … и т.д.). Проиллюстрируем сказанное на примере табл.2
Пусть нас не интересует выпуск для внешнего потребления продукции 2-й отрасли ( k=2 ) и мы хотим определить затраты продукции 1-й отрасли на единицу этой продукции. Из табл.2 находим, что на каждую единицу продукции 2-й отрасли ( х2=1 ) затрачивается: продукции 1-й отрасли a12=0.4 и 2-й отрасли a22=0.1.
Таковы будут прямые затраты. Пусть нужно изготовить у2=100. Можно ли для этого планировать выпуск 1-й отрасли х1=0.4100=40 ? Конечно, нельзя, т.к. необходимо учитывать, что 1-я отрасль часть своей продукции потребляет сама ( а11=0.2 ), и поэтому суммарный ее выпуск следует скорректировать: х1=40+0.240=48. Однако и эта цифра неверна, т.к. теперь уже следует исходить из нового объема продукции 1-й отрасли – х1'=48 и т.д. Но дело не только в этом. Согласно табл.2 продукция 2-й отрасли также необходима для производства и 1-й и 2-й отраслей и поэтому потребуется выпускать больше, чем у2=100. Но тогда возрастут потребности в продукции 1-й отрасли. Тогда достаточно обратиться к составленной систем уравнений, положив у1=0 и у2=1 ( см п.2 ):