Контрольная работа по "Эконометрике"

Автор работы: Пользователь скрыл имя, 17 Декабря 2013 в 10:55, контрольная работа

Краткое описание

Задача 6 Имеются данные за 5 месяцев года о потребительских расходах на душу населения (у, руб.), средней заработной плате и социальных выплатах (х, руб.) по 16 районам региона. Данные приведены в таблице: ... Задание:
Рассчитайте параметры уравнений регрессий (y=a+bx+ε и y=a+b+ε в задачах 1 - 5; y=a+bx+ε и y=a+b1x+ b2x2 +ε в задачах 6-10). Оцените тесноту связи с показателем корреляции и детерминации. Рассчитайте средний коэффициент эластичности и дайте сравнительную оценку силы связи фактора с результатом. Рассчитайте среднюю ошибку аппроксимации и оцените качество модели.

Прикрепленные файлы: 1 файл

эконометрика.docx

— 163.71 Кб (Скачать документ)

Задание:

  1. Определить коэффициенты автокорреляции уровней ряда первого и второго порядка.
  2. Обоснуйте выбор уравнения тренда и определите его параметры.
  3. Сделайте выводы.
  4. Результаты оформите в виде пояснительной записки.

Решение:

1. Определим коэффициент корреляции между рядами yt и уt-1.

 

где

 

 

 

 

Расчеты проведем в таблице:

 

Год

yt

yt-1

yt-2

           

)

)

 

1

3,8

-

-

-

-

-

-

-

-

-

-

 

2

4,7

3,8

-

1,46

0,12

-

-

-

-

0,42

-

 

3

3,9

4,7

3,8

0,17

1,55

0,53

0,28

0,45

0,20

0,51

0,24

 

4

2,7

3,9

4,7

0,63

0,20

-0,67

0,45

1,35

1,82

0,35

-0,90

 

5

2,9

2,7

3,9

0,35

0,57

-0,47

0,22

0,55

0,30

0,45

-0,26

 

6

2,3

2,9

2,7

1,42

0,31

-1,07

1,14

-0,65

0,42

0,66

0,70

 

7

3

2,3

2,9

0,24

1,33

-0,37

0,14

-0,45

0,20

0,57

0,17

 

8

3,6

3

2,3

0,01

0,21

0,23

0,05

-1,05

1,10

0,05

-0,24

 

9

2,9

3,6

3

0,35

0,02

-0,47

0,22

-0,35

0,12

0,09

0,16

 

10

3,7

2,9

3,6

0,04

0,31

0,33

0,11

0,25

0,06

0,12

0,08

 

11

4,5

3,7

2,9

1,02

0,06

1,13

1,28

-0,45

0,20

0,25

-0,51

 

12

4,2

4,5

3,7

0,50

1,09

0,83

0,69

0,35

0,12

0,74

0,29

78

42,2

38

33,5

6,19

5,77

0,00

4,58

0,00

4,57

4,19

-0,28

Среднее

6,5

3,49

3,45

3,37

3,35

             

 

Результат говорит о достаточно сильной зависимости между годовым объемом продаж автомобилей текущего и непосредственно предшествующего года и наличии во временном ряде линейной тенденции.

Определим коэффициент автокорреляции второго  порядка,

 

где

 

 

 

 

 

Результаты  не подтверждают наличие линейной тенденции.

2.  Рассмотрим  различные варианты уравнения  тренда с помощью Excel.

Для этого  добавим на диаграмме линию тренда. Щелкнув правой кнопкой мыши по точкам диаграммы, выберем из контекстного меню «Добавить линию тренда». В окне «Параметры линии тренда» выберем тип линии, «Показывать уравнение на диаграмме» и «Поместить на диаграмму величину достоверности аппроксимации(R^2)»:

 

Повторив данную операцию несколько  раз добавим на диаграмму различные  линии тренда:

 

  Проанализировав уравнения  полученных линий тренда, можно  сделать вывод, что наиболее  точно тенденцию временного ряда  описывает полиномиальное уравнение  6 степени:

y = -0,0004t6 + 0,015t5 - 0,2419t4 + 1,9363t3 - 7,8379t2 + 14,17t - 4,2652,

где t=1,2,…12.

поскольку из всех уравнений тренда обладает максимальным коэффициентом детерминации (величина достоверности аппроксимации (R^2)):

R² = 0,8814.

 


Информация о работе Контрольная работа по "Эконометрике"