Аппроксимация кривых разгона методом площадей

Автор работы: Пользователь скрыл имя, 06 Января 2014 в 00:06, контрольная работа

Краткое описание

Промышленные регуляторы - это универсальные устройства, предназначенные для регулирования самых разнообразных величин и объектов. Их конструкция такова, что к ним могут подключаться различные измерительные преобразователи и исполнительные механизмы. Они состоят из отдельных блоков, выполняющих конкретные операции (усиление, сложение, интегрирование и т.п.). Из этих блоков можно собрать схемы, реализующие практически любые законы регулирования. Современные промышленные регуляторы выполняются на основе микроконтроллеров.

Содержание

. Введение
5

2. Объекты регулирования и их характеристики
6
2.1. Классификация объектов регулирования
6
2.2. Свойства объектов
7

3. Методы определения свойств объекта
9
3.1. Аналитическое описание объекта
9
3.2. Определение передаточных функций по кривой разгона
15
3.2.1. Снятие кривой разгона
15
3.2.2. Определение передаточной функции одноемкостных объектов
16
3.2.3. Определение передаточной функции двухемкостного объекта
17
3.2.4. Определение передаточной функции методом последовательного
логарифмирования
18
3.2.5. Определение передаточной функции объекта методом площадей
20

4. Выбор регулятора
22
4.1. Выбор типа регулирования
22
4.2. Выбор закона регулирования
23
4.3. Реализация законов регулирования
24

5. Оптимальная настройка регуляторов
26
5.1. Критерии оптимальной настройки регулятора
26
5.2. Расчет запаса устойчивости методом расширенных амплитудно – частотных характеристик
28
5.2.1. П, И, ПИ - законы регулирования
28
5.2.2. ПИД - закон регулирования
29
5.2.3. Расчет оптимальной настройки
29
5.3. Расчет запаса устойчивости по величине максимума АЧХ
замкнутой системы
32
5.3.1. АФХ системы с П - регулятором
34
5.3.2. АФХ системы с И - регулятором
34
5.3.3. АФХ системы с ПИ - регулятором
35
5.3.4. АФХ системы с ПИД-регулятором
35
5.3.5. Пример расчета настройки ПИ - регулятора
36
5.3.6. Расчет настройки реальных ПИД - регуляторов
38
5.4. Расчет настройки регуляторов в режиме диалога
39
5.5. Экспериментальный метод определения настроек регулятора
43
5.6. Расчет параметров настройки микропроцессорных систем
автоматического регулирования
45

6. Настройка регуляторов, выполненных на основе микропроцессорных контроллеров
48

7. Влияние запаздывания в системе на качество регулирования
52
7.1. Устойчивость систем с запаздыванием
52
7.2. Компенсация чистого запаздывания
54

8. Микропроцессорные контроллеры для систем автоматизации
59
8.1. Ремиконты
59
8.2. Ломиконты
68
8.3. Димиконты
72
8.4. Приборы, регулирующие программируемые микропроцессорные
ПРОТАР
73
8.5. Программируемый контроллер ПК-И
76

Литература
78

Прикрепленные файлы: 1 файл

аппроксимация кривых разгона методом площадей.doc

— 1.80 Мб (Скачать документ)

Из  структурной схемы видно, что  непрерывный во времени процесс ε(t) преобразуется в дискретный ряд чисел ε(к), т.е. квантуется по уровню и по времени.

После преобразования числовой информации в вычислительном устройстве согласно выбранному закону регулирования, совершается обратный процесс преобразования цифровой информации в аналоговую и на выходе регулятора формируется непрерывное во времени регулирующее воздействие μ(t).

В основе математического анализа таких  систем лежит дискретное преобразование Лапласа, либо Z - преобразования.

Согласно  теореме В. А. Котельникова при замене непрерывного во времени сигнала квантованным, потери информации не происходит, если выполняется условие:

 

(108)


 

где Т- период квантования

В этом случае квантователь может быть заменен  обычным безынерционным звеном с коэффициентом передачи 1/Т. Тогда структурная схема автоматической системы регулирования преобразуется к виду изображенному на рис. 35.

<span class="dash041e_0431_044b_0447_043d_044b_0439__Char" style=" font-family: 'Times New Roman', 'Arial'; font-size: 14pt; text-decoratio


Информация о работе Аппроксимация кривых разгона методом площадей