Системы каталитической нейтрализации отработавших газов

Автор работы: Пользователь скрыл имя, 09 Августа 2013 в 16:56, контрольная работа

Краткое описание

Выпускная система современных автомобилей включает каталитический нейтрализатор. Каталитический нейтрализатор (обиходное название – катализатор) предназначен для снижения выброса вредных веществ в атмосферу с отработавшими газами.
Каталитический нейтрализатор применяется как на бензиновых, так и на дизельных двигателях. Нейтрализатор обычно устанавливается непосредственно за выпускным коллектором или перед глушителем.
Каталитический нейтрализатор имеет следующее устройство:
блок-носитель;
теплоизоляция;
корпус.

Прикрепленные файлы: 1 файл

Экология транспорта.docx

— 173.26 Кб (Скачать документ)

Вопрос: Системы  каталитической нейтрализации отработавших газов.

Выпускная система современных автомобилей включает каталитический нейтрализатор. Каталитический нейтрализатор (обиходное название – катализатор) предназначен для снижения выброса вредных веществ в атмосферу с отработавшими газами.

Каталитический нейтрализатор  применяется как на бензиновых, так  и на дизельных двигателях. Нейтрализатор  обычно устанавливается непосредственно  за выпускным коллектором или  перед глушителем.

Каталитический нейтрализатор  имеет следующее устройство:

  • блок-носитель;
  • теплоизоляция;
  • корпус.

Основным элементом каталитического  нейтрализатора является блок-носитель, который служит основанием для катализаторов. Блок-носитель изготавливается из специальной огнеупорной керамики. Конструктивно блок-носитель состоит из множества продольных сот-ячеек, которые значительно увеличивают площадь соприкосновения с отработавшими газами.

На поверхность сот-ячеек  тонким слоем наносятся вещества-катализаторы. В качестве таких веществ используются платина, палладий и родий. Катализаторы ускоряют протекание химических реакций в нейтрализаторе.

Платина и палладий относятся  к окислительным катализаторам. Они способствуют окислению несгоревших углеводородов (СН) в водяной пар, оксида углерода (угарный газ, СО) в углекислый газ.

Родий является восстановительным катализатором. Он восстанавливает оксиды азота (NOx) в безвредный азот.

Таким образом, три катализатора снижают содержание в отработавших газах трех вредных веществ. Такой  нейтрализатор называется трехкомпонентным каталитическим нейтрализатором.

Блок-носитель помещается в  металлический корпус. Между ними обычно располагается слой теплоизоляции. В корпусе нейтрализатора устанавливается кислородный датчик.

Условием эффективной  работы каталитического нейтрализатора является температура 300°С. При такой температуре задерживается порядка 90% вредных веществ. С целью быстрого прогрева нейтрализатора при запуске двигателя осуществляются следующие мероприятия:

1. установка нейтрализатора непосредственно за выпускным коллектором;

2. повышение температуры выхлопных газов за счет обогащения топливно-воздушной смеси.

 

Введение

Загрязнение воздуха вредными выбросами автомобилей в конце  ХХ века стало одной из глобальных экологических проблем. Путь ее решения только один автомобиль должен стать экологически чистым. Важное место здесь принадлежит системам нейтрализации, способным в несколько раз снизить токсичность выхлопных газов.

Всего в отработавших газах  обнаружено около 280 компонентов. По своим химическим свойствам, характеру воздействия на организм человека вещества, содержащиеся в отработавших газах, подразделяются на несколько групп:

    

 

 

 

 

СОСТАВ ОТРАБОТАВШИХ ГАЗОВ

БЕНЗИНОВЫХ ДВИГАТЕЛЕЙ И ДИЗЕЛЕЙ

Компоненты

отработавших

газов

Концентрация, %

Бензиновый

двигатель

Дизель

Азот

74-77

74-78

Кислород

0,3-8,0

2,0-18

Водяной пар

2,0-5,5

0,5-9,0

Оксиды углерода

0,5-12

0,005-0,4

Оксиды азота

0,01-0,8

0,004-0,6

Диоксид серы

-

0,002-0,02

Углеводороды

0,2-3,0

0,01-0,3

Альдегиды

0-0,2

0,001-0,009

Сажа, г/мз

0-0,04

0,01-1,1 и более




 

    

Таблица 1 – Состав отработавших газов бензиновых и  дизельных двигателей


 

1.нетоксичные: азот, кислород, водород, водяные пары, а также диоксид углерода;

2.токсичные: оксид углерода, оксиды азота, многочисленная группа

углеводородов, альдегиды, сажа. Причем сажа сама по себе нетоксична, но она адсорбирует на поверхности частиц канцерогенные полициклические углеводороды, в том числе наиболее вредный и токсичный бенз(а)пирен. При сгорании сернистых топлив образуются неорганические газы - диоксиды серы и сероводород.

Токсичные компоненты составляют 0,2–5% от объема отработавших газов, в зависимости от типа двигателя и режима его работы.

    

ЕВРОПЕЙСКИЕ И  КАЛИФОРНИЙСКИЕ (LEV, ULEV, SULEV) СТАНДАРТЫ

Нормы

токсичности

Бензиновый двигатель

Дизельный

двигатель

CO

CH

NOx

CO

NOx

CH+NOx

Сажа

Евро III, с 2000 г.

2,3

0,2

0,15

0,64

0,5

0,56

0,05

Евро IV, с 2005 г.

1,0

0,1

0,08

0,5

0,25

0,30

0,025

LEV

2,1

0,2

0,15

-

-

-

-

ULEV

1,0

0,02

0,03

-

-

-

-

SULEV, с 2004 г.

0,62

0,006

0,0125

-

-

-

0,006




 

    

Таблица 2 – Европейские  и американские нормы токсичности отработавших газов


 

За долгое время существования  проблемы автомобильных выбросов и  загрязнения ими атмосферного воздуха было разработано множество методов и способов, позволяющих уменьшить количества выхлопов или снизить их токсичность. В настоящее время разрабатываются и претворяются в жизнь мероприятия по снижению загрязнения атмосферы выбросами автомобильных двигателей, включающие в себя:

1.усовершенствование конструкций  двигателей и повышение качеств  изготовления;

2.поиск новых видов  топлива, применение различных присадок к нему;

3.создание энергосиловых установок для автомобилей, выбрасывающих меньшее

количество вредных веществ;

4.разработка устройств,  снижающих содержание вредных  компонентов в отработавших газах.

Практика показала, что  при этом достичь уровня токсичности  отработавших газов, требуемого законодательством развитых стран, первыми тремя способами нельзя. Поэтому получила широкое распространение нейтрализация отработавших газов в системе выпуска. В этом случае токсичные пары, вышедшие из цилиндров двигателя, нейтрализуются до выброса их в атмосферу.

     1. Способы нейтрализации отработавших газов в выпускной системе

Существует несколько  способов нейтрализации отработавших газов в выпускной системе автомобиля:

1.Окисление отработавших газов путем подачи к ним дополнительного воздуха в термических реакторах. Термические реакторы устанавливают на многих японских и американских двигателях. Термический реактор представляет собой

теплоизолированный объем  со специальной организацией течения отходящих газов, устанавливаемый в выпускной системе двигателя и осуществляющий термическое доокисление токсичных компонентов за счет собственного тепла отходящих газов.

Термическая нейтрализация  не зависит от вида сжигаемого топлива, наличия присадок и позволяет использовать в двигателях этилированный бензин. Повысить температуру отработавших газов в реакторе можно, уменьшив теплопотери применением проставок-экранов, теплоизоляцией корпуса реактора, использованием тепла реакции окисления, а также кратковременным уменьшением угла опережения зажигания. Реакторы особенно эффективны на режимах богатой смеси при больших нагрузках, не выходят из строя со временем, однако не дают полного окисления СО и СН и не восстанавливают NOx, поэтому применяются как дополнительные устройства перед каталитическим нейтрализатором.

2.Поглощение токсичных компонентов жидкостью в жидкостных нейтрализаторах. Этот способ не получил широкого распространения из-за малой эффективности и необходимости частой замены жидкости.

3.Применение каталитических нейтрализаторов и сажевых фильтров (на автомобилях с дизельными двигателями) – в настоящее время наиболее актуальный.

     2. Нейтрализации отработавших газов в выпускной системе бензиновых двигателей

Эволюция каталитических нейтрализаторов

В конце 60-х годов, когда  мегаполисы Америки и Японии стали  буквально задыхаться от смога, инициативу взяли на себя правительственные комиссии. Именно законодательные акты об обязательном снижении уровня токсичных выхлопов новых автомобилей вынудили промышленников усовершенствовать двигатели и разрабатывать системы нейтрализации.

В 1970 году в Соединенных  Штатах был принят закон, в соответствии с которым уровень токсичных выхлопов автомобилей 1975 модельного года должен был быть в среднем наполовину меньше, чем у машин 1960 года выпуска: СН — на 87%, СО — на 82% и NOх — на 24%.

Аналогичные требования были узаконены в Японии и в Европе.

Первым делом инженеры бросились совершенствовать системы  питания и зажигания. Но было очевидно, что добиться столь существенного улучшения ситуации с токсичностью без применения дополнительных устройств просто невозможно.

В 1975 году на американских машинах  появились первые каталитические нейтрализаторы отработавших газов — тогда еще двухкомпонентные, так называемого окислительного типа. Двухкомпонентными они назывались потому, что могли нейтрализовать только два токсичных компонента — СО и СН. Окислительными - потому, что происходившие реакции представляли из себя окисление (то есть фактически дожигание) молекул СО и СН с образованием углекислого газа СО2 и воды Н2О.

На американских автомобилях 1975 года появились транзисторные  системы зажигания с высокой энергией искры и свечи с медным сердечником центрального электрода — это свело к минимуму пропуски зажигания и последующие вспышки несгоревшего топлива в нейтрализаторе, которые грозят оплавлением керамики.

В 1977-м к нему добавили "противоазотную" секцию, а еще через пару лет объединили все в едином корпусе, дав неправильное название "трехступенчатый" нейтрализатор. На самом деле речь идет не о ступенях, а о трех подавляемых классах вредных веществ.

К 1990 году нейтрализатор  переехал вплотную к выпускному коллектору, чтобы быстрее нагреваться до рабочих температур (300ºС) – тем самым уменьшить вредные выбросы на стадии прогрева.

В 1995 году фирма ”Эмитек” разработала технологию подогрева катализатора мощным электрическим сопротивлением. Основанная на этом принципе модель катализатора ”6С” (или ”Эмикэт”) была установлена на ”БМВ-Альпина В12”.

Ну и, наконец, в 2000 году появилась  цеолитовая ловушка углеводородов (СН), задерживающая их при пуске мотора и лишь после нагрева до 220°С отдающая на "съедение" готовому к работе катализатору.

Устройство и принцип  действия каталитических нейтрализаторов

Современные каталитические нейтрализаторы – это трехкомпонентные

каталитические нейтрализаторы.

Трехкомпонентный каталитический нейтрализатор представляет собой корпус из нержавеющей стали, включенный в систему выпуска до глушителя. В корпусе располагается блок носителя с многочисленными продольными порами, покрытыми тончайшим слоем вещества катализатора, которое само не вступает в химические реакции, но одним своим присутствием ускоряет их течение.

    

Химикам известно множество  катализаторов - медь, хром, никель, палладий, родий. Но самой стойкой к воздействию сернистых соединений, которые образуются при сгорании содержащейся в бензине серы, оказалась благородная платина. На долю катализаторов приходится до 60% себестоимости устройства. Именно благодаря им происходят необходимые химические реакции – окисление монооксида углерода (СО) и несгоревших углеводородов (СН), а также сокращение количества окиси азота (NOx). В трехкомпонентном нейтрализаторе платина и палладий вызывают окисление СО и СН, а родий ”борется” с NOx. Кстати, родий – субпродукт при получении платины – наиболее ценный в этой троице. Чтобы увеличить площадь контакта каталитического слоя с выхлопными газами, на поверхность сот наносится подложка толщиной 20-60 микрон с развитым микрорельефом.

Как правило, носителем в  нейтрализаторе служит спецкерамика - монолит со

множеством продольных сот-ячеек, на которые нанесена специальная  шероховатая подложка (рис.1). Это позволяет максимально увеличить эффективную площадь контакта каталитического покрытия с выхлопными газами - до величин около 20 тыс. м2. Причем вес благородных металлов, нанесенных на подложку на этой огромной площади, составляет всего 2-3 грамма!!! Керамика сделана достаточно огнеупорной – выдерживает температуру до 800-850 ºС. Но все равно при неисправности системы питания и длительной работе на переобогащенной рабочей смеси монолит может не выдержать и оплавиться - и тогда каталитический нейтрализатор выйдет из строя. Именно поэтому так проблематично выглядит использование каталитических нейтрализаторов с керамическим носителем на карбюраторных двигателях.

Информация о работе Системы каталитической нейтрализации отработавших газов