Шпаргалка по "Экологии"

Автор работы: Пользователь скрыл имя, 13 Января 2014 в 15:46, шпаргалка

Краткое описание

Работа содержит ответы на вопросы по дисциплине "Экология".

Прикрепленные файлы: 1 файл

шпоры экология.docx

— 76.47 Кб (Скачать документ)

Абиотические факторы  — это комплекс условий неорганической среды, влияющих на организм.

Биотические факторы — это совокупность влияний жизнедеятельности одних организмов на другие. В отдельных случаях антропогенные факторы выделяют в самостоятельную группу факторов наряду с абиотическими и биотическими, подчеркивая тем самым чрезвычайное действие антропогенного фактора.

Различные подходы к  классификации экологических факторов

 Абиотические:Свет, температура, влага, ветер, воздух, давление, течения, долгота дня и т. д.

Механический состав почвы, ее проницаемость, влагоемкость

Содержание в почве или воде элементов питания, газовый состав, соленость воды

Биотические : Влияние растений на других членов биоценоза 

Влияние животных на других членов биоценоза  

Антропогенные факторы, возникающие  в результате деятельности человека

По времени: Эволюционный , исторический

По переодичности : переодический, непереодический

По очередности : первичный, вторичный 

По происхождению:Космический,Абиотический (абиогенный)

Биогенный,Биотический,Биологический,Природно-антропогенный,Антропогенный (в том числе техногенный, загрязнение среды, в том числе беспокойстве

Биосферный По среде  возникновения:Атмосферный,Водный (влажности)Геоморфологический,Эдафический,Физиологический,Генетический,Популяционный,Биоценотический,Экосистемный,Биосферный.

Влияние факторов среды определяется прежде всего их воздействием на обмен  веoеств организмов. Отсюда все экологические факторы по их действию можно подразделить на прямодействующие и косвеннодействующие. Те и другие могут оказывать существенные воздействия на жизнь отдельных организмов и на все сообщество. Экологические факторы могут выступать то в виде прямодействующего, то в виде косвенного. Каждый экологический фактор характеризуется определенными количественными показателями, например силой и диапазоном действия.

2.Деструкторы и их роль  в  биосфере.

Деструкторы — организмы, питающиеся мертвым органическим веществом.

В зависимости  от способа питания деструкторы  делятся на детритофагов и редуцентов.

Детритофаги — организмы, способные разложить (разрушить) крупные органические молекулы на составные части. К ним относятся черви, улитки, мокрицы.

Редуценты — микроорганизмы (бактерии и грибы), разрушающие остатки мёртвых растений и животных и превращающие их в неорганические соединения.

Таким образом основная биологическая функция деструкторов — минерализация органического вещества

Редуценты( деструкторы) Они участвуют в последней стадии разложения - минерализации органических веществ до неорганических соединений. Редуценты возвращают вещества в круговорот, превращая их в формы, доступные для продуцентов. К редуцентам относятся главным образом микроскопические организмы (бактерии, грибы и др.) – микроконсументы. Роль редуцентов в круговороте веществ, чрезвычайно велика. Без редуцентов в биосфере накопились бы груды органических остатков; иссякли бы запасы минеральных веществ, необходимых продуцентам, и жизнь в такой форме, которую мы знаем, прекратилась бы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Билет 20

1. Закономерности действий факторов на организмы. Толерантность и пластичность видов.

Влияние факторов среды определяется прежде всего их воздействием на обмен  веoеств организмов. Отсюда все экологические факторы по их действию можно подразделить на прямодействующие и косвеннодействующие. Те и другие могут оказывать существенные воздействия на жизнь отдельных организмов и на все сообщество. Экологические факторы могут выступать то в виде прямодействующего, то в виде косвенного. Каждый экологический фактор характеризуется определенными количественными показателями, например силой и диапазоном действия.

Для разных видов растений и животных условия, в которых они особенно хорошо себя чувствуют, неодинаковы. Например, некоторые растения предпочитают очень  влажную почву, другие — относительно сухую. Одни требуют сильной жары, другие лучше переносят более  холодную среду и т. д.

Интенсивность экологического фактора, наиболее благоприятная  для жизнедеятельности организма, называется оптимумом, а дающая наихудший  эффект — пессимумом, т. е. условия, при которых жизнедеятельность организма максимально угнетается, но он еще может существовать. Так, при выращивании растений при различных температурах точка, при которой наблюдается максимальный рост, и будет оптимумом. В большинстве случаев это некий диапазон температур, составляющий несколько градусов, поэтому лучше здесь говорить о зоне оптимума. Весь интервал температур, от минимальной до максимальной, при которых еще возможен рост, называют диапазоном устойчивости (выносливости) или толерантности. Точки, ограничивающие его, т. е. максимальная и минимальная, пригодные для жизни температуры, — это пределы устойчивости. Между зоной оптимума и пределами устойчивости по мере приближения к последним растение испытывает все нарастающий стресс, т. е. речь идет о стрессовых зонах или зонах угнетения в рамках диапазона устойчивости (рис. 3.1). По мере удаления от оптимума вниз и вверх по шкале не только усиливается стресс, а в конечном итоге по достижении пределов устойчивости организма происходит его гибель. 

Подобные эксперименты можно провести и для проверки влияния других факторов. Результаты графически будут  соответствовать кривой подобного  же типа.

Повторяемость наблюдаемых тенденций  дает возможность сделать заключение, что здесь речь идет о фундаментальном  биологическом принципе. Для каждого вида растений (животных) существуют оптимум, стрессовые зоны и пределы устойчивости или выносливости в отношении каждого средового фактора.

Свойство видов адаптироваться к тому или иному диапазону  факторов среды обозначается понятием«экологическая пластичность» (экологическая валентность) вида. Чем шире диапазон колебаний экологического фактора, в пределах которого данный вид может существовать, тем больше его экологическая пластичность.

Виды, способные существовать при  небольших отклонениях от фактора, от оптимальной величины, называются узкоспециализированными, а выдерживающие  значительные изменения фактора  — широкоприспособленными. К узкоспециализированным видам относятся, например, организмы пресных вод, нормальная жизнь которых сохраняется при низком содержании солей в среде. Для большинства обитателей морей, наоборот, нормальная жизнедеятельность сохраняется при высокой концентрации солей в окружающей среде. Отсюда пресноводные и морские виды обладают невысокой экологической пластичностью по отношению к солености. В то же время, например, трехиглой колюшке свойственна высокая экологическая пластичность, так как она может жить как в пресных, так и в соленых водах.

Экологически выносливые виды называют эврибионтными (eyros — широкий): маловыносливые —стенобионтными (stenos — узкий). Эврибионтность и стенобионтность характеризуют различные типы приспособления организмов к выживанию. Виды, длительное время развивающиеся в относительно стабильных условиях, утрачивают экологическую пластичность и вырабатывают черты стенобионтности, тогда как виды, существовавшие при значительных колебаниях факторов среды, приобретают повышенную экологическую пластичность и становятся эврибионтными (рис. 3.2). 

в экологии — выносливость вида по отношению к колебаниям какого-либо экологический фактора. Диапазон между экологическим минимумом и максимумом фактора составляет предел толерантности. Толерантные организмы — это организмы, устойчивые к неблагоприятным изменениям среды. Представление о лимитирующем влиянии максимума наряду с минимумом ввел В. Шелфорд (1913), оно известно под названием Закон толерантности Шелфорда;

Отношение организмов к колебаниям того или иного определенного  фактора выражается прибавлением приставки  «эври-» или «стено-» к названию фактора. Например, по отношению к температуре различают эври- и стенотермные организмы, к концентрации солей — эвристеногалинные, к свету — эври- и стенофотные и др. По отношению ко всем факторам среды эврибионтные организмы встречаются редко. Чаще всего эври- или стенобионтность проявляется по отношению к одному фактору. Так, пресноводные и морские рыбы будут стеногалинными, тогда как ранее названная трехиглая колюшка — типичный эвригалинный представитель. Растение, являясь эвритермным, одновременно может относиться к стеногигробионтам, т. е. быть менее стойким относительно колебаний влажности.

Эврибионтность, как правило, способствует широкому распространению видов. Многие простейшие, грибы (типичные эврибионты) являются космополитами и распространены повсеместно. Стенобионтность обычно ограничивает ареалы. В то же время, нередко благодаря высокой специализированности, сте-нобионтам принадлежат обширные территории. Например, рыбоядная птица скопа (Pandion haliaetus) — типичный стенофаг, а по отношению же к другим факторам является эврибионтом, обладает способностью в поисках пищи передвигаться на большие расстояния и занимает значительный ареал.

Все факторы среды взаимосвязаны, и среди них нет абсолютно  безразличных для любого организма. Популяция и вид в целом  реагируют на эти факторы, воспринимая  их по-разному. Такая избирательность  обусловливает и избирательное  отношение организмов к заселению  той или иной территории.

Различные виды организмов предъявляют  неодинаковые требования к почвенным  условиям, температуре, влажности, свету  и т. д. Поэтому на разных почвах, в разных климатических поясах произрастают различные растения. С другой стороны, в растительных ассоциациях формируются  разные условия для животных. Приспосабливаясь к абиотическим факторам среды и  вступая в определенные биотические  связи друг с другом, растения, животные и микроорганизмы распределяются по различным средам и формируют многообразные экосистемы, объединяющиеся в биосферу Земли. Следовательно, к каждому из факторов среды особи и формирующиеся из них популяции приспосабливаются относительно независимым путем. Экологическая валентность их по отношению к разным факторам оказывается неодинаковой. Каждый вид обладает специфическим экологическим спектром, т. е. суммой экологических валентностей по отношению к факторам среды.

2. Круговорот веществ и поток энергии в биосфере.

Главная функция биосферы заключается  в осуществлении круговорота химических элементов. Глобальный биотический круговорот совершается при участии всех населяющих планету организмов. Он заключается в циркуляции веществ между почвой, атмосферой, гидросферой и живыми организмами. Благодаря биотическому круговороту возможно длительное существование и развитие жизни при ограниченном запасе доступных химических элементов. 
В круговороте веществ, как в многократном участии веществ в процессах, протекающих в атмосфере, литосфере, гидросфере, различают малый круг биотического обмена (био-геоценотический) и большой (биосферный). 
 Большой круг биотического обмена — это безостановочный планетарный процесс циклического, неравномерного во времени и пространстве перераспределения вещества, энергии и информации, многократно входящих в непрерывно обновляющиеся экологические системы биосферы. Большой круг биотического обмена наиболее ярко проявляется в круговороте воды и циркуляции атмосферы. 
 Малый биотический круговорот происходит на основе большого и заключается в циркуляции веществ между растениями, животными и микроорганизмами. 
Оба круговорота взаимосвязаны и представляют собой как бы единый процесс. Втягивая в свои многочисленные орбиты косную среду, биотический круговорот веществ обеспечивает воспроизводство живого вещества и оказывает активное влияние на облик биосферы. 
В основе круговорота веществ лежит наличие в биосфере двух основных типов питания: аутотрофного и гетеротрофного. 
Аутотрофы извлекают необходимые для жизни химические вещества из окружающей среды и при помощи солнечной энергии включают их в органическое вещество. 
Гетеротрофы разлагают органическое вещество до углекислого газа, воды и минеральных солей и возвращают их в окружающую среду. Этим обеспечивается круговорот веществ, который возник в процессе эволюции как необходимое условие существование жизни. При этом световая энергия солнца трансформируется живыми организмами в другие формы энергии — химическую, механическую, тепловую. Определенная часть солнечной энергии рассеивается в виде тепла. 
Деятельность и взаимоотношения всех живых существ в природе основываются на односторонне направленном потоке энергии и круговороте веществ. 
Используя неорганические вещества, зеленые растения за счет энергии солнца создают органические вещества, которые другими живыми существами (гетеротрофами — потребителями и деструкторами) разрушаются с тем, чтобы продукты этого разрушения могли быть использованы для новых органических синтезов. 
Важная роль в глобальном круговороте веществ принадлежит воде, ее циркуляции между океаном, атмосферой и верхним слоем литосферы. Вода испаряется и воздушными течениями переносится на огромные расстояния. Выпадая на поверхности сушит в виде осадков, она способствует разрушению горных пород, делая их доступными для растений и микроорганизмов, размывает верхний почвенный слой и уходит вместе с растворенными в ней химическими соединениями и взвешенными органическими частицами в океаны и моря. Подсчитано, что с поверхности Земли за минуту испаряется около 1 млрд. тонн воды. На образование 1 г водяного пара затрачивается 2,248 кДж энергии, которая возвращается в атмосферу. Циркуляция воды между океаном и сушей представляет собой важнейшее звено в поддержании биотического круговорота и жизни на Земле, а так же является важнейшим условием взаимодействия растений и животных с неживой природой. Благодаря этому процессу происходит постепенное разрушение литосферы, перенос компонентов в глубины Мирового океана. 
Энергия биотического круговорота невелика по сравнению с энергией, расходуемой в абиотических биогеохимических процессах. Благодаря ей осуществляется значительный объем работы по перемещению химических элементов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Билет 19 
1.Концепция ограничивающих факторов.

Поскольку факторы среды, действующие  одновременно, обладают разной силой  воздействия, то жизнедеятельность  организма будет зависеть от тех  факторов, которые больше всего отклоняются  от зоны оптимума, и если хотя бы один из них выйдет за пределы выносливости, то организм погибнет. Факторы, которые  определяют жизнедеятельность организма  в данной среде, называются ограничивающими  или лимитирующими. Ряд ученых в  разное время занимались изучением  лимитирующих факторов, в результате чего были сформули-рованы законы о лимитирующих факторах 
Впервые изучением лимитирующих факторов занимался немецкий химик Ю.Либих. Он изучал влияние разнообразных факторов на рост растений и установил, что урожай культур лимитируется не теми элементами питания, которые требуются в больших количествах и которых в почве достаточно, а теми, которые требуются в малых количествах и которых в почве недостаточно. На основании этих наблюдений он в 1840 году сформулировал следующий закон: «Рост растения зависит от того элемента питания, который присутствует в минимальном количестве», который получил название «закон минимума». Исследования в этой области показали, что для успешного применения данного закона на практике необходимо учитывать два вспомогательных принципа. 
В среде между факторами происходит взаимодействие, в результате которого один фактор может частично заменять лимитирующий фактор и тогда последний перестает быть лимитирующим. Например, потребность в цинке у некоторых растений в тени ниже, чем на свету, значит, в тени цинк с меньшей вероятностью может быть лимитирующим фактором.

Дальнейшие исследования в области  аутэкологии показали, что «закон минимума» справедлив не только для  растений. но и для животных и человека. Позже этот закон был истолкован следующим образом: «Выносливость организма определяется самым слабым звеном в цепи его экологических потребностей», т.е. жизненные возможности организма лимитируются экологическими факторами, количество и качество которых близко к необходимому организму минимуму. Дальнейшее снижение или ухудшение этих факторов ведет организм к гибели. 
Концепция лимитирующих факторов была дополнена в XX веке еще двумя законами, поскольку изучение взаимодействия организма со средой показало, что ответная реакция организма на изменение силы экологического фактора описывается куполообразной кривой.

Этот закон был установлен в 1909 году Ф.Блэкманом и формулируется следующим образом: «Факторы среды, имеющие в конкретных условиях пессимальное значение, особенно затрудняют возможность существования вида в данных условиях, вопреки и несмотря на оптимальное сочетание других отдельных условий». Однако, как уже указывалось выше, пессималь- ное значение фактор может иметь как при низкой, так и при высокой силе воздействия. Поэтому «закон ограничивающих факторов» не дает однозначного ответа, какой из факторов, имеющих пессимальные значения, максимальный или минимальный по силе, является лимитирующим.

Информация о работе Шпаргалка по "Экологии"