Шпаргалка по "Экологии"

Автор работы: Пользователь скрыл имя, 17 Мая 2013 в 15:28, шпаргалка

Краткое описание

1 Цель курса «Экология и устойчивое развитие»
2 История развития экологии.
3 Разделы экологии: аутэкология, демэкология, синэкология
4 Понятие «Устойчивое развитие» и роль экологии в реализации
5 Экологические факторы среды обитания: абиотические, биотические и антропогенные
....
64 Газовый состав атмосферы

Прикрепленные файлы: 1 файл

EKOLOGIYa.docx

— 353.06 Кб (Скачать документ)

Круговорот углерода

Углерод в биосфере часто представлен  наиболее подвижной формой - углекислым газом. Источником первичной углекислоты  биосферы является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры.   Миграция углекислого газа в биосфере Земли протекает двумя  путями. Первый путь заключается в  поглощении его в процессе фотосинтеза  с образованием органических веществ  и в последующем захоронении  их в литосфере в виде торфа, угля, горных сланцев, рассеянной органики, осадочных горных пород. Так, в далекие  геологические эпохи сотни миллионов  лет назад значительная часть  фотосинтезируемого органического вещества не использовалась ни консументами, ни редуцентами, а накапливалась и постепенно погребалась под различными минеральными осадками. Находясь в породах миллионы лет, этот детрит под действием высоких температур и давления (процесс метаморфизации) превращался в нефть, природный газ и уголь, во что именно - зависело от исходного материала, продолжительности и условий пребывания в породах. Теперь мы в огромных количествах добываем это ископаемое топливо для обеспечения потребностей в энергии, а сжигая его, в определенном смысле завершаем круговорот углерода. Если бы ни этот процесс в истории планеты, вероятно, человечество имело бы сейчас совсем другие источники энергии, а может быть и совсем другое направление развития цивилизации.  

По второму пути миграция углерода осуществляется созданием карбонатной  системы в различных водоемах, где CO2 переходит в H2CO3, HCO31-, CO32-. Затем  с помощью растворенного в  воде кальция (реже магния) происходит осаждение карбонатов CaCO3 биогенным  и абиогенным путями. Возникают мощные толщи известняков. Наряду с этим большим круговоротом углерода существует еще ряд малых его круговоротов на поверхности суши и в океане. В пределах суши, где имеется растительность, углекислый газ атмосферы поглощается  в процессе фотосинтеза в дневное  время. В ночное время часть его  выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление  органических веществ с образованием CO2. Особое место в современном  круговороте веществ занимает массовое сжигание органических веществ и  постепенное возрастание содержания углекислого газа в атмосфере, связанное  с ростом промышленного производства и транспорта.

Круговорот кислорода

Кислород - наиболее активный газ. В  пределах биосферы происходит быстрый  обмен кислорода среды с живыми организмами или их остатками  после гибели. В составе земной атмосферы кислород занимает второе место после азота. Господствующей формой нахождения кислорода в атмосфере  является молекула О2. Круговорот кислорода в биосфере весьма сложен, поскольку он вступает во множество химических соединений минерального и органического миров. Свободный кислород современной земной атмосферы является побочным продуктом процесса фотосинтеза зеленых растений и его общее количество отражает баланс между продуцированием кислорода и процессами окисления и гниения различных веществ. В истории биосферы Земли наступило такое время, когда количество свободного кислорода достигло определенного уровня и оказалось сбалансированным таким образом, что количество выделяемого кислорода стало равным количеству поглощаемого кислорода.

Круговорот азота

При гниении органических веществ  значительная часть содержащегося  в них азота превращается в  аммиак, который под влиянием живущих  в почве трифицирующих бактерий окисляется затем в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, например с карбонатом кальция СаСОз, образует нитраты: 2HN0з + СаСОз = Са(NОз)2 + СОС + Н0Н

Некоторая же часть азота всегда выделяется при гниении в свободном  виде в атмосферу. Свободный азот выделяется также при горении  органических веществ, при сжигании дров, каменного угля, торфа. Кроме  того, существуют бактерии, которые  при .недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих де ни трифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде.

Непрерывная убыль минеральных  азотных соединений давно должна была бы привести к полному прекращению  жизни на Земле, если бы в природе  не существовали процессы, возмещающие  потери азота. К таким процессам  относятся, прежде всего происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота; последние с водой дают азотную кислоту, превращающуюся в почве в нитраты. Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий — «клубеньков», почему они и получили название клубеньковых бактерий. Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества. Таким образом, в природе совершается непрерывный круговорот азота. Однако ежегодно с урожаем с полей убираются наиболее богатые белками части растений, например зерно. Поэтому в почву необходимо вносить удобрения, возмещающие убыль в ней важнейших элементов питания растений.

Круговорот фосфора

Фосфор входит в состав генов  и молекул, переносящих энергию  внутрь клеток. В различных минералах  фосфор содержится в виде неорганического фосфатиона (PO43-). Фосфаты растворимы в воде, но не летучи. Растения поглощают PO43- из водного раствора и включают фосфор в состав различных органических соединений, где он выступает в форме так называемого органического фосфата. По пищевым цепям фосфор переходит от растений ко всем прочим организмам экосистемы. При каждом переходе велика вероятность окисления содержащего фосфор соединения в процессе клеточного дыхания для получения организмом энергии. Когда это происходит, фосфат в составе мочи или ее аналога вновь поступает в окружающую среду, после чего снова может поглощаться растениями и начинать новый цикл.

 

В отличие, например, от углекислого  газа, который, где бы он ни выделялся  в атмосферу, свободно переносится в ней воздушными потоками пока снова не усвоится растениями, у фосфора нет газовой фазы и, следовательно, нет свободного возврата в атмосферу. Попадая в водоемы, фосфор насыщает, а иногда и перенасыщает экосистемы. Обратного пути, по сути дела, нет. Что-то может вернуться на сушу с помощью рыбоядных птиц, но это очень небольшая часть общего количества, оказывающаяся к тому же вблизи побережья. Океанические отложения фосфата со временем поднимаются над поверхностью воды в результате геологических процессов, но это происходит в течение миллионов лет. Следовательно, фосфат и другие минеральные биогены почвы циркулируют в экосистеме лишь в том случае, если содержащие их отходы жизнедеятельности откладываются в местах поглощения данного элемента. В естественных экосистемах так в основном и происходит. Когда же в их функционирование вмешивается человек, он нарушает естественный круговорот, перевозя, например, урожай вместе с накопленными из почвы биогенами на большие расстояния к потребителям.

Круговорот серы

Сера является важным составным  элементом живого вещества. Большая  часть ее в живых организмах находится  в виде органических соединений. Кроме  того, сера входит в состав некоторых  биологически активных веществ: витаминов, а также ряда веществ, выступающих  в качестве катализаторов окислительно-восстановительных процессов в организме и активизирующих некоторые ферменты. Сера представляет собой исключительно активный химический элемент биосферы и мигрирует в разных валентных состояниях в зависимости от окислительно-восстановительных условий среды. Среднее содержание серы в земной коре оценивается в 0,047 %. В природе этот элемент образует свыше 420 минералов. В изверженных породах сера находится преимущественно в виде сульфидных минералов: пирита , пирронита , халькопирита , в осадочных породах содержится в глинах в виде гипсов, в ископаемых углях - в виде примесей серного колчедана и реже в виде сульфатов. Сера в почве находится преимущественно в форме сульфатов; в нефти встречаются ее органические соединения. В связи с окислением сульфидных минералов в процессе выветривания сера в виде сульфатиона переносится природными водами в Мировой океан. Сера поглощается морскими организмами, которые богаче ее неорганическими соединениями, чем пресноводные и наземные.

 

28 Возникновение и  развитие ноосферы: определение  В.И. Вернадского

Ноосфера — сфера разума; сфера взаимодействия общества и природы, в границах которой разумная человеческая деятельность становится определяющим фактором развития (эта сфера обозначается также терминами «антропосфера», «биосфера», «биотехносфера»). Ноосфера — предположительно новая, высшая стадия эволюции биосферы, становление которой связано с развитием общества, оказывающего глубокое воздействие на природные процессы. Согласно В. И. Вернадскому, «в биосфере существует великая геологическая, быть может, космическая сила, планетное действие которой обычно не принимается во внимание в представлениях о космосе… Эта сила есть разум человека, устремленная и организованная воля его как существа общественного».

Понятие «ноосфера» было предложено профессором математики Сорбонны Эдуардом Леруа (англ.)русск. (1870—1954), который трактовал её как «мыслящую» оболочку, формирующуюся человеческим сознанием. Э. Леруа подчёркивал, что пришёл к этой идее совместно со своим другом — крупнейшим геологом и палеонтологом-эволюционистом и католическим философом Пьером Тейяром де Шарденом. При этом Леруа и Шарден основывались на лекциях по геохимии, которые в 1922/1923 годах читал в Сорбонне Владимир Иванович Вернадский (1863—1945).

По мнению Вернадского, основными  предпосылками создания ноосферы являются:

расселение человечества по всей поверхности  Земли и физическое уничтожение  видов, «конкурирующих с человеком»,

радикальное усовершенствование средств связи и создания единой информационной системы и единой системы контроля над людьми,

создание и разработка новых  источников энергии (атомной, геотермической, «лунной», «ганглиевой»),

«подъём благосостояния трудящихся»  и «победа демократии»,

установление «равенства всех людей», причём не только равенства перед  законом, но и других его форм,

учреждение единого планетарного марксистско-ленинского государства,

вовлечение «широких народных масс»  в занятие наукой,

превращение человечества в «геологическую силу».

Академик утверждал, что эти  социальные реформы и катаклизмы сделают «переход к ноосфере»  необратимым.

В структуре ноосферы и биосферы Вернадский выделял «семь видов  вещества»:

живое,

биогенное (возникшее из живого),

косное (возникшее не из живого),

биокосное (частично живое, частично неживое),

радиоактивное,

атомарно-рассеянное,

космическое.

Эта теория получила своё логическое продолжение и развитие в трудах академика Лысенко, а также профессора Лепешинской, расширившей и углубившей учение о «живом веществе». Тем не менее «Теория семи видов вещества»  никогда не была принята западным научным сообществом.

Вернадский утверждал, что человечество в ходе своего развития превращается в новую мощную «геологическую силу», своей мыслью и трудом преобразующую  лик планеты. Соответственно, оно  в целях своего сохранения должно будет взять на себя ответственность  за развитие биосферы, превращающейся в ноосферу, а это потребует  от него определённой социальной организации  и новой, экологической и одновременно гуманистической этики. Иногда Вернадский писал о «ноосфере» как о состоявшейся реальности, иногда — как о неотвратимом будущем. «Биосфера не раз переходила в новое эволюционное состояние… — отмечал он. — Это переживаем мы и сейчас, за последние 10—20 тысяч лет, когда человек, выработав в социальной среде научную мысль, создаёт в биосфере новую геологическую силу, в ней не бывалую. Биосфера перешла или, вернее, переходит в новое эволюционное состояние — в ноосферу — перерабатывается научной мыслью социального человека» («Научная мысль как планетное явление»). Таким образом, понятие «ноосфера» предстаёт в двух аспектах:

ноосфера в стадии становления, развивающаяся стихийно с момента  появления человека;

ноосфера развитая, сознательно  формируемая совместными усилиями людей в интересах всестороннего  развития всего человечества и каждого  отдельного человека.

 

29 АНТРОПОГЕННОЕ ЗАГРЯЗНЕНИЕ СРЕДЫ Загрязнение окружающей среды и экологические проблемы человечества

Под загрязнением окружающей среды  понимают нежелательное изменение  ее свойств в результате антропогенного поступления различных веществ  и соединений. Это загрязнение  приводит к вредному воздействию  на литосферу, гидросферу, атмосферу, на биосферу, на здания, конструкции и  материалы, а в конечном итоге  и на самого человека. Главным источником такого загрязнения является возвращение  в природу огромной массы отходов, которые образуются в процессе производства и потребления человеческого  общества. Особенно опасно поступление  в окружающую среду химических веществ, синтезированных человечеством  и ранее не существовавших в природе. Существует большое количество загрязнений  и их видов.

Загрязнение почвенного покрова происходит в результате нерационального природодользования. Это загрязнение может возникать от безграмотного ведения сельского хозяйства, нарушения земель, в процессе строительства и горных выработок. В результате этого возникают мало продуктивные и непродуктивные земли. В крайнем случае, возникает ландшафт, так называемых «дурных земель» (бедленд), которые в настоящее время занимают 1% поверхности суши. Важной причиной загрязнения почв могут быть промышленные и сельскохозяйственные отходы, бытовой мусор, неправильное внесение удобрений. Главными загрязнителями являются тяжелые металлы и их соединения, удобрения, ядохимикаты, радиоактивные вещества.

Загрязнение гидросферы происходит, прежде всего, в результате сброса в  реки, озера и моря сточных вод. Их общий объем достигает 1 тыс. км3 в год. Для их нейтрализации методом  разбавления требуется около 10 тыс. км3 чистой воды. Наиболее загрязнены такие реки как Рейн, Дунай, Сена, Тибр, Миссисипи, Огайо, Волга, Днепр, Дон, Днестр, Нил, Ганг.

Загрязнение атмосферы происходит прежде всего результате сгорания минерального топлива. Главные загрязнители атмосферы — окислы углерода, серы и азота. Ежегодное поступление в атмосферу жрнистого газа оценивается в 100-150 млн. т. С его выбросами связано образование, так называемых, (ислотных дождей, которые наносят большой вред эастительному и животному миру, снижают урожайность, разрушают сооружения, памятники архитек-гуры, отрицательно сказываются на здоровье люей. Наибольшее распространение кислотные дож-ци получили в Европе и Северной Америке. Например, в Скандинавии, которая получает кислотные осадки в основном из Великобритании и ФРГ, в 20 тыс. озер исчезли лосось, форель и другая рыба. Во многих странах Западной Европы и в некоторых регионах России из-за кислотных дождей происходит гибель лесных угодий.

Информация о работе Шпаргалка по "Экологии"