Автор работы: Пользователь скрыл имя, 18 Апреля 2013 в 13:38, курсовая работа
Непрерывный рост населения Земли (число жителей на планете в конце XX в. превысило 6 млрд. человек) связан с соответствующим непрерывным увеличением мирового потребления энергии, заметным увеличением потребления воды, уменьшением площадей, занятых лесами и т. д. На этом фоне особенно заметны рост количества бытовых отходов и массы сточных вод, деградация земель (отчуждение земли населенными пунктами, промышленностью, транспортом, опустынивание, химическое загрязнение), загрязнение атмосферы и т. д.
Возникает закономерный вопрос: почему бы не использовать отходы, заменяя уменьшающиеся запасы руд? Так решались бы и задачи ресурсосбережения и экологии. Ответ прост: нет промышленных технологий переработки отходов. Их использование затруднено дисперсностью и присутствием летучих металлов. Хвосты обогащения дисперсны, но не содержат летучих примесей. Шлаки – компактный продукт, но содержат много примесей. Пылям и шламам присущи оба недостатка.
Окисленная форма железа в отходах определяет необходимость их переработки восстановительными процессами, например доменным. Однако дисперсные материалы нарушают газодинамику печи и увеличивают пылевынос. Применение агломерации не решает проблемы, так как процесс связан с интенсивным прососом газов через слой шихтовых материалов. Поэтому такие отходы должны быть предварительно окомкованы (получаемый продукт называют окатышами). Но этим не исчерпываются трудности переработки отходов с летучими примесями.
Рассмотрим влияние цинка
и щелочных металлов на ход доменной
плавки. Эти элементы не только летучи
(имеют высокое давление насыщенного
пара), но и легко восстанавливаются
уже на средних горизонтах печи в
виде паров. Поднимаясь с газовым
потоком, пары окисляются и конденсируются
на поверхности шихтовых материалов.
Со столбом шихты оксиды опускаются,
опять попадают в зону высоких
температур, восстанавливаются, и возникает
круговорот металлов (рис. 2). Причина
циркуляции лежит в самом принципе
шахтной печи, где всегда существуют
градиенты окислительно-
Щелочные металлы растворяются
в огнеупорной футеровке, подвергая
ее химической эрозии. Цинк и его
оксид образуют наросты (настыли), которые
механически разрушают
Таким образом, даже при использовании окатышей из высокожелезистых окомкованных пылей и шламов происходит перерасход кокса и возникает взаимодействие примесей с футеровкой. При переработке отходов цветной металлургии это усугубляется дополнительным расходом кокса из-за более низкого содержания железа. Окатыши из чистых по примесям хвостов обогащения приводят к перерасходу кокса по этой же причине. Поэтому переработка указанных материалов очень ограниченна.
Шламовые отвалы пытались
ликвидировать, используя их для
засыпки отработанных карьеров и
оврагов с последующей
Рисунок 2. Циркуляция цинка и щелочных металлов в доменной печи.
Комплексная утилизация многих отходов с извлечением полезных компонентов требует создания новых процессов, к которым предъявляются следующие основные требования: возможность переработки дисперсного сырья, восстановления железа и извлечения других полезных элементов. В этих процессах надо отказаться от конструкции шахтной печи и использования кокса. Последнее связано с его дефицитностью, высокой стоимостью и вредными выбросами при производстве. Поэтому в мире активно развиваются так называемые процессы жидкофазного восстановления.
Основными являются Ромелт (РоссиЯ, 1979), HIsmelt (Германия, 1984), DIOS (Япония, 1988), AusIron (Австралия, 1994). По времени появления и степени освоения первым является процесс Ромелт. Опытная установка построена в 1984 году на Новолипецком металлургическом комбинате (НЛМК).
Ромелт - новый способ переработки отходов. Процесс Ромелт является непрерывным способом получения чугуна из железосодержащего сырья и отходов с применением недефицитных и дешевых марок некоксующихся углей . Принципиальная схема печи Ромелт представлена на рис. 3. ‚ печь с расплавом шлака через нижние фурмы вдувается кислородно-воздушная смесь, которая интенсивно перемешивает шлак. Печь футерована только до уровня нижних фурм. Остальная часть выполнена из водоохлаждаемых элементов - кессонов. На холодной поверхности кессонов шлак образует твердую корку - гарнисаж. Так решается проблема стойкости футеровки в контакте со шлаковым расплавом. Шихта – руда или железосодержащие отходы (шламы, окалина) и уголь - непрерывно загружаются сверху на поверхность шлакового расплава с температурой 1400Р1500 °С. Предварительной подготовки пылевидного сырья или угля не требуется. Уголь выполняет две функции. Его горение совместно с дожиганием газов поддерживает температуру в печи. Кроме того, он обеспечивает восстановление оксидов железа и формирование чугуна, который в виде капелек осаждается на дно (подину) печи. Металл и шлак выпускают через отверстия (летки), выполненные на разных уровнях.
Для дожигания выделяющихся газов (CO, H2 , летучие углеводороды угля) и возврата тепла в ванну через верхние фурмы подается кислород. В опытной установке выходящие из печи газы поступают в котел-охладитель, где окончательно дожигаются за счет естественного подсоса воздуха, охлаждаются и подаются на газоочистку. В промышленном агрегате они будут использованы для выработки электроэнергии.
Процесс Ромелт расширяет возможности прямого использования отходов. На время эксплуатации печи накоплен опыт переработки различных материалов, включая шламы доменного и конвертерного производств, окалину, шлак свинцово-цинкового комбината. Из них извлекали главный полезный компонент (железо) и получали чугун, который использовали для производства стали.
Рисунок 3. Схема печи Ромелт
Остальные компоненты переходят в безопасное компактное состояние - шлак, который по составу и свойствам близок к доменному и может быть использован аналогично ему. Так решается двуединая ресурсоэкологическая задача. Переработка шлаков цветной металлургии еще один пример утилизации несобственных отходов в черной металлургии. Однако на этом не исчерпываются возможности процесса.
В печи Ромелт компоненты распределяются между чугуном, шлаком и газом. Опыт показал, что легковосстановимые нелетучие элементы Cu, Ni восстанавливаются и переходят в чугун. Поэтому комплексный подбор шихты позволит получить легированный чугун со специальными свойствами.
Летучие элементы Zn, Pb, Ag выносятся с дымовыми газами и при охлаждении осаждаются в пыль, где их концентрация многократно возрастает. Поэтому при переработке некоторых отходов пыль процесса Ромелт становится сырьем для получения цветных металлов.
Для такого использования пыли важно знать, в какие соединения связываются элементы, и уметь управлять этим процессом. Теоретическое решение задачи можно получить расчетом сложных химических равновесий, а практическая реализация достигается изменением степени дожигания.
Уничтожение токсичных отходов
в металлургических агрегатах. Некоторые
отходы химической промышленности, отработанные
или запрещенные к
Металлургические агрегаты, сочетающие высокие температуры и широкий диапазон окислительно-восстановительных условий, представляют собой пока еще не востребованный резерв для уничтожения различных отходов. Вполне очевидна и экономическая обоснованность такого подхода.
Окислительный характер дутья и температура более 2000 °С создают наилучшие условия для полного сгорания токсичных и диоксиноопасных материалов при их подаче в фурменную зону доменных печей. Уже проводят вдувание твердых гранулированных или измельченных отходов пластмасс (Япония, ФРГ). При этом уничтожаются отходы и используется их теплота горения. Более простым является инжекция через фурмы жидкостей, в частности электротехнических (совол, совтол), основу которых составляют полихлорбифенилы (ПХБ). Микропримеси ПХДД/Ф появляются уже в процессе производства ПХБ, а при их горении диоксины образуются в чрезвычайно опасных количествах. Это подтверждено последствиями пожаров силовых подстанций. Поэтому в настоящее время ПХБ-материалы выводятся из эксплуатации, и проблема их уничтожения стоит очень остро. Относительно небольшие конструктивные изменения позволяют использовать печь Ромелт для сжигания и утилизации бытовых и горючих промышленных отходов . Ее можно рассматривать как мусоросжигательный завод нового поколения, преимуществом которого является возможность связывания негорючих компонентов в шлак и металлический полупродукт.
При сжигании отходов большое
значение приобретают условия
2.ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ – ТЕОРЕТИЧЕСКАЯ ОСНОВА РЕШЕНИЯ РЕСУРСОЭКОЛОГИЧЕСКИХ ЗАДАЧ.
Применение термодинамического моделирования (ТДМ) для решения задач в экологии и ресурсосбережении имеет одну общую особенность. Как правило, необходимо рассмотреть поведение примесей на фоне развития основных процессов, что предопределяет большое число возможных химических реакций. Поэтому ТДМ может быть проведено только расчетом сложных химических равновесий, в которых состав смеси реагирующих веществ устанавливается не по одной, а по двум и более независимым реакциям. Рассмотрим основные принципы ТДМ на примере поведения цинка в процессе Ромелт.
Цинк может осаждаться из газовой фазы в виде ZnO или ZnS. Вторая возможность реализуется при применении сернистых углей, поскольку практически вся сера переходит в газовую фазу. Помимо азота основными ее компонентами являются CO, CO2 , H2, H2O, которые взаимодействуют по реакции
H2O + CO = CO2 + H2
Это основной процесс в газовой фазе, зависящий от расхода кислорода дутья. На его фоне развиваются реакции с участием цинка и серы, содержание которых составляет доли процента. Конкуренция между ZnO и ZnS связана с совместным протеканием большого числа реакций с участием паров цинка:
Zn + H2O(CO2) = ZnO(s) + H2 (CO),
Zn + H 2 S(COS) = ZnS(s) + H 2 (CO),
ZnS(s) + H2O(CO2) = ZnO(s) + H2S(COS)
Возможны и другие реакции с участием различных веществ системы C-H-O-S-Zn. Общее решение задачи основано на условиях термодинамического равновесия. Они вытекают из второго закона термодинамики и заключаются в существовании экстремумов функций состояния системы. Так, равновесию в изобарно-изотермических условиях отвечает минимум энергии Гиббса (G). Функция G однозначно определяется давлением, температурой и числами молей реагирующих веществ. Расчет равновесного состава сводится к отысканию чисел молей, при которых энергия Гиббса минимальна. Алгоритмы решения таких задач реализованы в программных продуктах, позволяющих проводить ТДМ сложных систем. Например, отечественный комплекс ИВТАНТЕРМО рассчитывает смеси
Рисунок 4. Области устойчивости соединений цинка для системы состава 65% CO - 33,5% H2 - 1% Zn - 0,5% S2 в зависимости от температуры и степени окисления α.
из 350 веществ, что позволяет учесть все возможные соединения и получить объективные результаты ТДМ.
На рис. 4 представлены результаты расчета задачи осаждения цинка из серосодержащей газовой фазы при различных температурах и степени окисления α:
где ni - числа молей компонентов.
Полученная диаграмма показывает, в каких соединениях связан цинк, и позволяет прогнозировать его поведение. Аналогичные расчеты, проведенные для соединений азота, серы, ПХДД/Ф дают возможность анализировать поведение экотоксикантов в металлургических агрегатах и процессах.
3.УТИЛИЗАЦИЯ КОНВЕРТЕРНЫХ ГАЗОВ.
Особенности утилизации конвертерных газов - основной составляющей их является СО; температура их в зависимости от периода плавки колеблется в пределах 1300-1700 °С. В случае работы конвертеров с подачей кислорода только сверху в отходящих газах практически нет водорода; при донной продувке и защите фурм подачей жидких или газообразных углеводородов в отходящих газах может содержаться заметное количество водорода.
Конвертерные газы представляют
собой ценнейший вид
1) Интенсивность выделения
газов из конвертера
2) Отходящие конвертерные
газы несут с собой
а) с полным дожиганием (дополнительно выделяемое тепло в известной степени используется в котле-утилизаторе);
б) с частичным дожиганием (при максимальном выделении газов дожигается только часть СО, остальная часть СО сгорает на свече на выходе из системы; при уменьшении выделяющихся газов количество СО, сгорающего на свече, уменьшается; в результате обеспечивается по ходу всей продувки более равномерная работа котла-утилизатора при постоянной производительности дымососа; как при полном, так и при частичном дожигании объемы газов вследствие подсоса воздуха существенно (в 3—4 раза) возрастают;