Автор работы: Пользователь скрыл имя, 19 Мая 2012 в 18:26, реферат
Оксид азота (I) является экологически вредным неорганическим соединением. Присутствие N2О в атмосфере приводит к разрушению озонового слоя Земли и способствует возникновению парникового эффекта.
Ежегодный прирост концентрации N2О в атмосфере составляет 0,2% Основными источниками загрязнения окружающей среды оксидом азота (I) являются сжигание природного топлива и процессы горения биомассы. Кроме того, оксид азота (I) в значительных количествах содержится в выбросах таких крупнотоннажных производств, как получение азотной кислоты, азида натрия, пропилена, искусственного шелка и др.
1. Очистка отходящих газов оксидов азота....................................................3
2. Современное состояние технологии утилизации и обезвреживания отработанных СОЖ...........................................................................................9
3.Список литературы.......................................................................................16
4. Задача............................................................................................................17
Для целей консервации в принципе пригодны не только отработанные трансмиссионные масла, но и большинство других.
После
соответствующей очистки
Очистка синтетических СОЖ
Весьма важной является проблема переработки смесей отработанных синтетических и нефтяных масел. Такие смеси образуются либо из-за отсутствия элементарной культуры эксплуатации масел и сбора отработанных продуктов, либо из-за невозможности организации отдельного сбора. Подобные трудности возникают и при регенерации отработанных масел на смешанной основе (так называемых полусинтетических). Смеси отработанных масел для компрессоров холодильных машин (нефтяные компоненты и сложные эфиры пентаэритрита) предложено очищать по схеме, включающей стадии удаления основной части хладоагентов, контактной очистки асканитом, фильтрования и осушки цеолитом. Очищенная смесь пригодна для повторного использования по прямому назначению.
Основная информация по очистке и регенерации отработанных синтетических масел содержится в патентах. Масла на основе силиконов находят широкое применение, их используют, в частности, в качестве охлаждающих или изоляционных средств в электроустановках высокого напряжения. Для осушки и дегазации таких масел можно использовать последовательную очистку цеолитом (силикагелем, оксидом алюминия), а затем активированным углем или активированным природным сорбентом с последующим отделением и фильтрацией. Такая очистка исключает удаление из масла присадок. Затем проводят дегазацию в вакууме при 50–110ºС.
Предлагается очистка и осушка отработанного силиконового масла при 20–80 ºС с помощью инертного газа, получаемого испарением жидкого азота. Очищенное масло дегазируют при нагреве в вакууме. Конечный продукт содержит менее 1 млнˉ¹ воды. В ряде патентов предлагаются разнообразные способы регенерации отработанных синтетических масел. Так, регенерацию метилфенилсиликоновых масел осуществляют деполимеризацией сырья при 250–280ºС, остаточном давлении 17,3–21,3 КПа в атмосфере азота в присутствии 0,24–04% пиридина и такого же количества воды. Продукт деструкции полимерных молекул подвергают полимеризации в присутствии серной кислоты. Выход конечного продукта регенерации вязкостью 100 мм²/с при 25ºС составляет 84%.
Регенерацию масел на основе полиалкиленгликолей, легко абсорбирующих влагу при эксплуатации, предложено проводить с помощью цеолитов с частицами диаметром 0,1–10 мм. Процесс можно осуществлять в контейнере, на дно которого помещается цеолит в сетчатой упаковке; для повышения эффективности обезвоживания масло в контейнере подвергают воздействию ультразвука.
Отработанные сложноэфирные масла предложено регенерировать с помощью 3–10%-ого водного раствора серной кислоты, взятого в количестве 20–50% мас. На исходное масло. Процесс ведут при 20–80ºС с последующей промывкой водой и осушкой. По другому методу отработанное сложноэфирное масло обрабатывают при 45–55ºС 10–20%-ным водным раствором гидроксида натрия в количестве 20–30% мас. на сырье. Последующими стадиями регенерации являются выделение масляного слоя, его водная промывка, сушка и фильтрация. Процесс позволяет кроме загрязнений и продуктов старения удалить из масла присадки и продукты их окисления. При этом не происходит термической и гидролитической деструкции сложного эфира.
Для очистки смазочных материалов на основе фторхлоруглеродных соединений, попадающих при эксплуатации примесей предложен фильтрационный метод, предполагающий применение различных сорбентов – активного оксида алюминия, глинозема, боксита, силикагеля, глин и др. Предусмотрен четкий контроль качества получаемого продукта. Отработанное фреоновое масло подвергают грубой очистке от посторонних загрязнителей. Затем масло разбавляют петролейным эфиром 10:2 и после перемешивания смесь разделяют. Из выделенного масла удаляют оставшиеся компоненты петролейного эфира.
Предложен
метод регенерации
В
связи с ростом потребления синтетических
масел и усилением мер по охране окружающей
среды значение процессов очистки и регенерации
отработанных продуктов в дальнейшем
будет возрастать.
Список
литературы
1. Медоуз Д. X., МедоузД. Л., Рандерс Й. За пределами роста. - М.: Прогресс, 1994.
2. Небел Б. Наука об окружающей среде: как устроен мир.: В 2 т. - М.: Мир, 1993.
3. Серов Г.П.
4. Поташников Ю.М. Утилизация отходов производства и потребления
Учебное пособие. – Тверь.: Издательство ТГТУ, 2004. – 107 с.
5. Вайсберг Л.А. и др. Новые технологии переработки бытовых и промышленных отходов, «Вторичные ресурсы», №5 –6, 2001, 45 – 51 с.
6.
Школьникова В.М. Топливо, смазочные материалы
и технологические жидкости. Москва «Высшая
школа», 1998