Автор работы: Пользователь скрыл имя, 07 Декабря 2014 в 02:48, курс лекций
Экологическая химия находится на стыке целого ряда научных дисциплин и во многом соприкасается и перекрывается со смежными научными направлениями, среди которых можно назвать биологические и геологические науки, в то же время экотоксикология тесно связана с медико-фармакологическими дисциплинами. Экологическая химия изучает изменения химических веществ под воздействием факторов окружающей среды, причем центральной задачей является изучение поведения антропогенных веществ, т.е. их содержания (концентрации в окружающей среде), процессов разложения, превращения и накопления в организмах и окружающей среде.
Определение понятий «экологическая химия» и «экотоксикология».
Задачи и основные понятия в экотоксикологии.
Фосфорорганические пестициды (ФОП) в организме животных накапливаются преимущественно в головном и спинном мозге, в легких, сердце, печени, почках, селезенке, скелетных мышцах, превращаясь в свои метаболиты. Под влиянием окислительных процессов тиофос превращается в фосфакол, карбофос в имидоксон, диазинон в диазоксон, антио в фосфамид, метилнитрофос в паранитрокрезол, при этом по степени токсичности метаболиты более опасны, чем основное вещество. При частичном дехлорировании хлорофос превращается в ДДВФ, азунтол в потазан. Эти вещества выделяются с мочой и фекалиями в течение 7-30 дней.
Ртутьорганические пестициды (гранозан, меркуран, агронал, фализан и др.) накапливаются во всех жизненно важных органах, в том числе в головном мозге, причем больше всего в мозжечке, печени, почках, мышцах и др. Выделяются из организма дольше года. Они относятся к сильнодействующим ядовитым высокотоксичным веществам, обладают выраженной кумуляцией и стойкостью. Действующим началом большинства ртутьорганических препаратов являются этилмерхлорид и этилмеркурофосфат. При несоблюдении мер личной защиты эти препараты могут стать причиной пищевых отравлений. В организме ртутьорганические препараты быстро проникают во все органы и ткани (особенно богатые липидами). При остром отравлении этими соединениями отмечаются расстройства со стороны сердечно-сосудистой системы, изменения в печени, желудке, костном мозге, периферической крови и т.д.
В последнее время ртутные протравители семян заменяются на комбинированные, менее опасные препараты на основе фунгицидов и бактерицидов.
Пестициды используются в разных препаративных формах, чаще в виде дустов, гранулированных препаратов, суспензий, эмульсий, аэрозолей, фумигантов.
Способы применения пестицидов зависят от препаративной формы и назначения (обработка семенного материала, опрыскмвание, опыление, обработка гранулированными препаратами). Тактика применения пестицидов обоснована особенностями биологии вредителей, возбудителей болезней и сорняков.
При применении пестицидов большое значение имеет правильный выбор нормы расхода препарата. Она определяется по действующему веществу и не должна превышать норму, предусмотренную «Списком химических и биологических средств борьбы с вредителями, болезнями растений и сорняками, разрешенных для применения в сельском хозяйстве».
Для всех разрешенных к применению пестицидов установлены ПДК. Принципиальные подходы к гигиеническому нормированию являются общими для всех химических веществ в воздухе рабочей зоны, воде и почве, в том числе и для пестицидов. Чрезвычайно важное звено в общей системе мероприятий по профилактике вредного влияния на здоровье человека – установление максимально допустимых уровней (МДУ) в продуктах питания.
В качестве норматива МДУ в продуктах питания принимается такое их количество, которое, поступая в организм человека ежедневно, не наносит никакого ущерба его здоровью. Нормы МДУ для каждого пестицида устанавливаются отдельно. Некоторые пестициды совсем не должны присутствовать в продуктах (алдрин, гептахлор и др.). Не допускается присутствие многих пестицидов (байтекс, гемма-изомер, ГХЦГ, гексахлоран и др.) в молоке, мясе, масле, яйцах.
Диоксины
Диоксин и диоксиноподобные соединения обладают высокой токсичностью, представляют реальную угрозу загрязнения пищевой продукции, включая питьевую воду. Источниками загрязнения могут быть предприятия металлургической, целлюлозо-бумажной и нефтехимической промышленности. Наиболее опасный источник загрязнения – предприятия, производящие хлорную продукцию, в том числе пестициды.
Непосредственными источниками интоксикации оказываются 2,3,7,8-тетрахлордтбензо – n–диоксин (2,3,7,8-ТХДД), образующийся как микропримесь при получении ТХВ, и 2,3,7,8-тетрахлордибензо-фуран (2,3,7,8-ТХДВ) – микропримесь ПХБ (полихлорбифенола).
ТХДД – наиболее опасный яд для человека. Отличается высокой стабильностью, не подвергается гидролизу и окислению, устойчив к высокой температуре (разлагается при 7500С), действию кислот и щелочей, невоспламеняем, обладает высокой растворимостью в жирах.
ТХДД относится к веществам первого класса токсичности с лимитирующим показателем. Расчетная среднесмертельная доза для человека при однократном оральном поступлении – 0,05-0,07 мг/кг, расчетная минимальная токсическая доза при хроническом оральном поступлении – 0,1 мкг/кг.
Наряду с ТХДД и ТХДВ, существует 22 изомера ТХДД и 38 изомеров ТХДВ.
При попадании в окружающую среду диоксины интенсивно накапливаются в почве, водоемах, активно мигрируют по пищевым цепям, особенно в жиросодержащих объектах. В организм человека диоксины поступают с продуктами питания (98-99% от общей дозы). Среди основных продуктов опасные концентрации этих веществ обнаруживаются в мясе, молочных продуктах и рыбе. Следует отметить способность диоксинов накапливаться в коровьем молоке, где их содержание выше в 40-200 раз, чем в тканях животного. Источниками диоксинов могут быть картофель, морковь и другие корнеплоды, так как основная часть диоксинов кумулируется в корневых системах растений, и только 10% - в наземных частях.
Особое внимание следует уделить проблеме содержания плихлорированных дифенилов и диоксинов в грудном молоке, что является фактором риска для здоровья детей раннего и старшего возраста.
Допустимая суточная доза (ДСД) для человека согласно рекомендации ВОЗ – 10 нг/кг. Аналогичный уровень принят в России.
Максимально допустимые уровни (МДУ) содержания диоксинов в основных группах пищевых продуктов составляют, нг/кг (в пересчете на ТХДД):
Регуляторы роста растений
Регуляторы роста растений (РРР) применяют с целью влияния на процессы роста, развития и жизнедеятельности растений, обеспечения урожайности, улучшения качества, облегчения уборки. К этой группе соединений также можно отнести гербициды, которые вызывают задержку роста и гибель растений, но от дозы могут принимать ингибирующее и стимулирующее действие.
Природные РРР. Это присущие растениям соединения, выполняющие роль фитогормонов (ауксины, цитокинины, гибберелины, этилен и т.д.). Не представляют какой либо опасности для человека.
Синтетические РРР – получают химическим или микробиологическим путем. К этой группе относятся:
Синтетические РРР могут оказывать вредное воздействие на организм человека как ксенобиотики. Степень опасности многих РРР достаточно не изучена. Потенциальная опасность РРР для человека усугубляется си стойкостью этих соединений в окружающей среде и продуктах питания.
РРР используют также для увеличения сроков хранения растительных продуктов, например, картофеля, моркови, лука, репы. При этом сохраняются водный баланс, вкусовые качества, витамины, минеральные вещества и другие показатели пищевой ценности.
Тяжелые металлы
Растения могут накапливать и такие элементы, которые не нужны для их собственного обмена веществ. Для осуществления подобной аккумуляции элементы должны находиться в усваиваемой растениями форме, поэтому, например, растения могут постепенно усваивать тяжелые металлы (ТМ). К ТМ относятся химические элементы (металлы) с атомной массой более 40 атомных единиц или химические элементы с удельным весом свыше 5 г/см3.
Тяжелые металлы вызывают сердечно-сосудистые расстройства, тяжелые формы аллергии, обладают эмбриотропными и канцерогенными свойствами. Они являются генетическими ядами, поскольку аккумулируются в организме с отдаленным эффектом действия, проявляющемся в наследственных заболеваниях, умственных расстройствах и т.д.
Важность понимания проблемы загрязнения продукции тяжелыми металлами определяется тем, что сельскохозяйственные культуры и животные находятся на более высоком уровне в пищевой цепи продукционного процесса и используются как продукты питания человека, что приводит к накоплению ТМ в пищевой цепи. Наряду с давно известными путями попадания тяжелых металлов в воду обнаружены реакции, в результате которых тяжелые металлы становятся растворимыми в воде или в липидах (маслах и жирах), проникая затем в организм и включаясь в цикл питания.
Санитарно-гигиенические нормы содержания избыточных элементов в продуктах питания и кормах постоянно пересматриваются и разрабатываются новые. Верхняя пороговая концентрация ТМ в сухом веществе корма характеризуется следующими величинами (мкг/кг): для кобальта, молибдена, меди, цинка и марганца соответственно: 1,0 и выше, 2,0-3,0 и выше, 20-40 и выше, 60-100 и выше, 60-70 и выше; для ртути не более 0,05.
Нормирование ТМ в компонентах окружающей среды сводится к разработке ПДК, при котором гарантируется получение экологически безопасной продукции. Во многих странах мира разработаны национальные нормативы ДОК. Допустимые остаточные количества (ДОК) тяжелых металлов в пищевых продуктах представлены в таблице 8.
Таблица 8
Допустимые остаточные количества (ДОК) тяжелых металлов в пищевых продуктах, мг/кг
Продукция |
Тяжелый металл | ||||||
Hg |
Cd |
Pb |
Zn |
Ni |
Cr |
As | |
Рыбопродукты |
5,0 |
0,1 |
1,0 |
40,0 |
0,5 |
0,3 |
1,0 |
Мясопродукты |
0,03 |
0,05 |
0,5 |
40,0 |
0,5 |
0,2 |
0,5 |
Молочные продукты |
0,005 |
0,01 |
0,05 |
5,0 |
0,1 |
0,1 |
0,05 |
Хлебопродукты |
0,01 |
0,02 |
0,2 |
25,0 |
0,5 |
0,2 |
0,2 |
Овощи |
0,02 |
0,03 |
0,5 |
10,0 |
0,5 |
0,2 |
0,2 |
Фрукты |
0,01 |
0,03 |
0,4 |
10,0 |
0,5 |
0,1 |
0,2 |
Соки, напитки |
0,005 |
0,02 |
0,4 |
10,0 |
0,3 |
0,1 |
0,2 |
Колебания содержания ТМ в продукции достигают существенных размеров. Например, содержание ртути в сахаре меняется в 3 раза, тогда как в рыбе возможны колебания в 1300 раз. Колебания свинца составляют 2-165 раз, кадмия – 2-450 раз, хрома – 3-16, меди – 3-121, цинка – 3-30, никеля – 2-30 раз. Такой размах изменений содержания ТМ в продукции может быть вызван: видом самой продукции, условиями ее производства (технология процесса получения продукции), внешними факторами состояния окружающей среды, степенью чистоты исходных компонентов для ее производства и т.д. Широкий диапазон колебаний содержания свинца характерен для меда (64 раза). Незначительные колебания содержания ТМ характерны для целого ряда продуктов: сахар, пиво, орехи.
Больше всего меди содержится в растениях лука, петрушки, редьки, кабачков, меньше – в кукурузе и картофеле. Высоким содержанием меди отличаются соки томатный, абрикосовый, морковный.
Цинк в значительных количествах находится в следующих продуктах: фасоли, горохе, луке репчатом и зеленом, огурцах, чесноке, кабачках. Очень много цинка в злаках, белых грибах. Больше всего в семенах конопли. В незначительных количествах содержится в баклажанах, арбузе, перце красном, хрене, шпинате, абрикосе, сливе, клюкве, черешне, печени, почках, говядине, сырых яйцах.
К растениям, накапливающим большие количества марганца, относятся: горох, фасоль, укроп, петрушка, свекла, хрен, шпинат, щавель, морковь, лук, чеснок, грибы, виноград, земляника, клюква, крыжовник, малина, смородина, яблоки, груши.
Не все ТМ представляют одинаковую опасность для живых организмов. По токсичности и способности накапливаться в пищевых цепях приоритетно можно выделить немногим более 10 элементов – загрязнителей биосферы: ртуть, свинец, кадмий, медь, ванадий, олово, цинк, молибден, кобальт, никель. Ртуть, кадмий, свинец можно считать наиболее опасными. Медь, цинк, молибден, кобальт, марганец получили название микроэлементов и имеют важное биологическое значение в жизни теплокровных, растений и микроорганизмов.
Загрязнение ртутью
В общем, экологическое значение тяжелых металлов или других устойчивых токсинов в цепи питания можно продемонстрировать на примере ртути – первого металла, для которого было обнаружено биоконцентрирование.
В 1953 году в Японии у 121 жителя побережья в бухте Минамата было обнаружено заболевание, сопровождающееся ломотой в суставах, нарушением слуха и зрения. Это заболевание, вошедшее в литературу под названием «болезнь Минамата», закончилось смертью почти для трети больных. Расследование установило, что на ацетиленовом производстве ртутные отходы сбрасывались в реку, впадающую в бухту. Ртуть микробиологическим путем превращалась в метилртуть: