Мониторинг радиационного загрязнения окружающей среды

Автор работы: Пользователь скрыл имя, 16 Июня 2014 в 22:38, курсовая работа

Краткое описание

Целью данной курсовой работы является рассмотрение метода осуществления мониторинга радиационного загрязнения окружающей среды.
Для достижения данной цели были поставлены следующие задачи:
– Определить понятие «радиационное загрязнение»;
– ознакомиться с источниками радиационного загрязнения;
– ознакомиться со стандартами и предъявляемые требования к осуществлению мониторинга радиационного загрязнения;
– ознакомиться с оборудованием, приборами и установками для осуществления мониторинга;
– описать принципы контроля и нормирования в области радиационной безопасности;
– рассмотреть нормативные документы в области радиационной безопасности РФ.

Прикрепленные файлы: 1 файл

Мониторинг радиационного загрязнения ОС.doc

— 607.50 Кб (Скачать документ)

 

2 Источники ионизирующих излучений и загрязнений окружающей среды радиоактивными веществами

2.1 Классификация источников ИИ. Природный радиационный фон

 

Все живые существа на Земле постоянно подвергаются воздействию ионизирующей радиации путем внешнего и внутреннего облучения за счет естественных и искусственных источников ионизирующих излучений, которые образуют радиационный фон. Естественные источники ИИ – это есть совокупность космического излучения, излучения от естественных радионуклидов, рассеянных в атмосфере, литосфере, гидросфере и находящихся в составе биологических организмов: все эти излучения образуют природный радиационный фон (ПРФ) или естественный радиационный фон (ЕРФ), средняя эффективная доза которого составляет 2000 мкЗв в год на человека. Искусственные источники ИИ – это совокупность ИИ и РВ, образующихся в результате ядерных взрывов, деятельности атомных электростанций, извлечения полезных ископаемых из недр Земли, применения ИИ и РВ в медицине, науке, в других отраслях хозяйственной деятельности человека. Совокупность этих источников составляет искусственный радиационный фон – ИРФ, который в настоящее время в целом по земному шар добавляет к ЕРФ лишь 1-3%. [ 1 ]

 

2.2 Естественные источники ИИ

 

К естественным источникам ионизирующего излучения относятся космическое излучение (первичное и вторичное), природные радиоактивные вещества, рассеянные в атмосферном воздухе, гидросфере и литосфере.

2.2.1 Космическое излучение

 

Различают первичное и вторичное космическое излучение. Первичные космические лучи представляют собой поток частиц высоких энергий, приходящих на Землю из космоса и возникающих в процессе термоядерных реакций в недрах Солнца и звезд. Первичное космическое излучение состоит из протонов – 92%, альфа-частиц – 7%, ядер атомов лития, бериллия, углерода, азота и кислорода и др. Кроме того в состав космического излучения входят электроны, позитроны, гаммакванты и нейтрино. При резком увеличении солнечной активности возможно нарастание космического излучения на 4-100%. Лишь немногие первичные космические лучи достигают поверхности Земли, так как они взаимодействуют с атомами воздуха, рождая потоки частиц вторичного космического излучения. На орбите Земли скорость космических частиц примерно равна 300 км/с, т.е. около 0,001 с (где с – скорость света). Плотность космических частиц на орбите Земли зависит от интенсивности термоядерных реакций на Солнце. В спокойные периоды деятельности Солнца плотность первичных космических частиц на орбите Земли на высоте 50 км от ее поверхности равна 1-2 част./см2 × с. В периоды усиления активности Солнца количество их может достигать 100 част./см2 .Первичные космические частицы, обладая огромной энергией (в среднем 10 ГэВ) и скоростью, взаимодействуют с ядрами атомов, составляющих атмосферу, и рождают вторичное излучение. Вторичное космическое излучение состоит из электронов, нейтронов, мезонов и фотонов; максимум его интенсивности находится на высоте 20-30 км, на уровне моря интенсивность излучения составляет около 0,05% от первоначального. Элементарные частицы, составляющие вторичное космическое излучение, под действием магнитного поля Земли образуют вокруг нее два радиационных пояса – внешний и внутренний. На широте экватора внешний пояс расположен на расстоянии 20-60 тыс. км, а внутренний –

на расстоянии 600-6000 км от поверхности Земли. На некоторых участках внутренний пояс может опускаться на расстояние до 300 км от поверхности Земли.

Поскольку среди элементарных частиц радиационных поясов преобладают электроны и позитроны, то плотность частиц измеряется количеством электронно-позитронных пар на квадратный сантиметр в секунду. Плотность потока частиц во внешнем и внутреннем радиационных поясах равны соответственно 2107 и 1105 электрон/см2. Заряженные частицы вторичного космического излучения движутся вдоль силовых линий магнитного поля Земли, которое является для них ловушкой. В итоге в радиационных поясах нашей планеты потоки заряженных частиц в сотни миллионов раз превышают потоки солнечного

ветра в космическом пространстве. На поверхность Земли попадает, главным образом, вторичное космическое излучение, которое создает ионизацию компонентов атмосферы. Интенсивность ионизации возрастает с увеличением высоты. На уровне моря она минимальна, а на высоте 12-16 км достигает максимума. Ионизация, вызываемая космическими лучами, возрастает в направлении от экватора к полюсам, что является следствием отклонения первично заряженных космических частиц магнитным полем Земли. У космических частиц есть так называемые мягкая и жесткая компоненты (составные части). Мягкая компонента состоит из электронов, позитронов и фотонов. По своей проникающей способности она близка к гамма-излучению. Жесткая компонента состоит из мю-мезонов и нейтрино. Жесткая компонента космического излучения обладает очень высокой проникающей способностью. Мю-мезоны могут проникать в толщу литосферы до 3 км, а нейтрино пронизывают Землю насквозь, улетая далее в космос. Космические лучи и ионизирующее излучение, испускаемое природными радиоактивными веществами, содержащимися в воде, почве и горных породах, образуют фоновое излучение, к которому адаптировананыне существующая биота. Выдающийся русский радиобиолог А.М. Кузин полагает, что атомная радиация природного радиоактивного фона явилась одним из главных факторов происхождения жизни на Земле и необходима для нормального существования современных живых организмов (Кузин, 2002). Обычно интенсивность гамма-излучения на высоте 1 метр от поверхности Земли колеблется от 10 до 15 мкР/ч, иногда достигая 25 мкР/ч. В разных частях биосферы естественный фон различается в 2-3 раза. Например, в горах на высоте 3 км он в 3 раза выше, чем на уровне моря. Люди, живущие на уровне моря, получают в среднем из-за космических лучей эффективную эквивалентную дозу около 300 мкЗв в год; для людей, живущих выше 2000 м над уровнем моря, эта величина в несколько раз больше. Еще более интенсивному облучению подвергаются экипажи и пассажиры самолетов: при подъеме с высоты 4000 м до 12000 м уровень облучения за счет космических лучей возрастает примерно в 25 раз, продолжает расти при дальнейшем увеличении высоты до 20000 км и выше (высота полета сверхзвуковых реактивных самолетов). Например, при перелете из Нью-Йорка в Париж пассажир получает дозу около 50 мкЗв.

От воздействия космической радиации планета защищена озоновым слоем, уровень радиации не превышает допустимой, биота адаптирована к фоновому излучению. [ 1 ]

 

2.2.2 Природные (естественные) радиоактивные вещества

 

Встречающиеся в природе радиоактивные элементы принято называть естественными. Большинство из них – тяжелые элементы с порядковыми номерами от 81 до 96. Природные радиоактивные элементы путем альфа- и бета-распада превращаются в другие радиоактивные изотопы. Эта цепь радиоактивных превращений называется радиоактивным рядом или семейством. Тяжелые естественные радиоизотопы образуют четыре радиоактивных семейства: урана-радия; тория; актиния; нептуния. Массовые числа членов урано-радиевого ряда всегда четные и подчиняются закону: А = 4n + 2, где n изменяется от 51 до 59. Для ториевого ряда массовые числа четные и определяются по формуле: А = 4n, где n изменяется от 52 до 58. Для актиниевого ряда массовые числа элементов всегда нечетные и могут быть определены по формуле: А = 4n + 3, где n изменяется от 51 до 58. Массовые числа элементов ряда нептуния нечетные и определяются по формуле: А = 4n + 1, где n изменяется от 52 до 60.

Родоначальники каждого семейства характеризуются очень большими периодами полураспада (см. табл. 2.2.2.1), которые сопоставимы с временем жизни Земли и всей Солнечной системы.

Таблица 2.2.2.1 – родоначальники естественных радиоактивных семейств [ 1 ]

Ряд

Родоначальник семейства

Период полураспада – Tфиз., годы

A = 4n

Торий-232

1,4 * 1010

A = 4n + 2

Уран-238

4,51 * 109

A = 4n + 3

Уран-235

7,13 * 108

A = 4n + 1

Нептуний-232

2,2 * 106


 

Самый большой период полураспада у тория (14 млрд лет), поэтому он со времени аккреации Земли сохранился почти полностью. Уран-238 распался в значительной степени, распалась подавляющая часть урана-235, а изотоп нептуния-232 распался весь. По этой причине в земной коре много тория (почти в 20 раз больше урана), а урана-235 в 140 раз меньше, чем урана-238. Поскольку родоначальник четвертого семейства (нептуний) со времени аккреации Земли весь распался, то в горных породах его почти нет. В ничтожных количествах нептуний обнаружен урановых рудах. Но происхождение его вторичное и обязано бомбардировке ядер урана-238 нейтронами космических лучей. Сейчас нептуний получают с помощью искусственных ядерных реакций. Для эколога он не представляет интереса. Периоды полураспада и типы распада членов естественных радиоактивных рядов приведены в таблице 2. Естественные радиоактивные семейства обладают рядом общих особенностей, которые заключаются в следующем:

1. Родоначальники каждого  семейства характеризуются большими периодами полураспада, находящимися в пределах 108-1010 лет.

2. Каждое семейство имеет  в середине цепи превращений  изотоп элемента, относящийся к группе благородных газов (эманацию).

3. За радиоактивными  газами следуют твердые короткоживущие элементы.

4. Все изотопы трех  радиоактивных семейств распадаются  двумя путями: альфа- и бета-распадами. Причем короткоживущие ядра семейств испытывают конкурирующие альфа- и бета-распад, тем самым образуя разветвления рядов. Если при альфа- и бета-распадах ядра не переходят сразу в нормальное состояние, то эти акты сопровождаются гамма-излучением. Ряды заканчиваются стабильными изотопами свинца с массовыми числами 206, 208 и 207, соответственно, для уранового, ториевого, актиноуранового ряда. Семейства урана-радия и тория являются активными гамма-излучателями по сравнению с семейством актиния, мощность дозы гамма-излучения которого весьма невелика. Таким образом, в радиоактивных семействах имеются альфа-, бета- и гамма-излучатели, причем мощность дозы каждого излучения в разных семействах неодинакова. Общее число излучателей того или иного рода для разных семейств приведено в таблице 2.2.2.2

 

 

 

Таблица 2.2.2.2 – количество излучателей естественных рядов [ 1 ]

Название

ряда

Альфа-излучатели

Бета-излучатели

Гамма-излучатели

общее

количе-

ство

количе-

ство

важных

общее

количе-

ство

количе-

ство

важных

общее

количе-

ство

количе-

ство

важных

Урана-радия

Актиния

Тория

13

10

8

8

7

7

10

7

6

4

2

4

11

6

6

3

-

2


 

Ядро урана-235 обладает замечательным свойством. Кроме спонтанного распада он способен делиться при захвате нейтрона с освобождением колоссальной энергии, поэтому является одним из ядерных горючих. Уран, химически выделенный из руд (естественно, что это смесь всех трех природных изотопов урана) и приготовленный в виде окиси (U3O8), является стабильным источником альфа-излучения. Примерно через год после его выделения устанавливается радиоактивное равновесие между ураном-238 и короткоживущими бета-активными продуктами его распада. Тогда этот препарат может служить в качестве стабильного источника бета-излучения. Уран связан с рудами осадочного, гидротермального и магматического происхождения. Он содержится более чем в 100 минералах. Среди них наиболее часты окислы урана, соли фосфорной, ванадиевой, кремниевой, мышьяковой, титановой и ниобиевой кислот. Наиболее важные промышленные руды урана представлены первичным минералом – уранинитом (урановой смолкой), представляющим собой окисел урана черного цвета. Кроме того есть множество вторичных минералов урана, которые называются урановыми слюдками. Наиболее распространенные из них: торбернит – Си(UО2)2(PO4)2 * nH2О, отенит – Са(UO2)2(РО4)2 * nН2О, карнотит – K2(UО2)2(VО4)2 * 3H2О, тюямунит – Ca(UO2)2(VO4)2 * 8H2О. Из урановых слюдок крупные промышленные скопления образуют только карнотит и тюямунит. Они же являются рудой для получения

ванадия и радия. [ 1 ]

2.2.2.1. Радиоактивность оболочек Земли

 

Первые наблюдения радиоактивности почв и горных пород были проведены в самом начале XX века. Последующие исследования показали, что все объекты географической оболочки обладают определенной радиоактивностью. Общее представление о порядке наиболее часто наблюдаемых величин естественной радиоактивности почв, растений, земной коры и гидросферы можно видеть в таблице 2.2.2.1.1.

Таблица 2.2.2.1.1 – среднее содержание естественных радионуклидов в разных объектах географической оболочки Земли [ 1 ]

Объекты

Элементы, мас. %

Уран

Торий

Радий

Земная кора

Почва

Морская вода

Пресная вода

Зола растений

2,5 * 10-4

1 * 10-4

3 * 10-7

2 * 10-8

2 * 10-8

1,3 * 10-3

6 * 10-4

7 * 10-8

2 * 10-9

5 * 10-5

8,3 * 10-11

8 * 10-11

1 * 10-14

1 * 10-15

2 * 10-11


 

2.2.2.2. Радиоактивность горных пород

 

О распределении радиоактивных элементов в толще земной коры и литосферы в целом, на глубинах недоступных непосредственному наблюдению, можно судить только на основании косвенных фактов и общих представлений о строении Земли. В настоящее время наибольшим признанием пользуется концепция, согласно которой радиоактивность

пород падает с глубиной, но все же остается измеримой до весьма значительных глубин. Резко выраженное накопление радиоактивных элементов в гранитном слое континентальной коры, установленное Стреттом еще в 1906 году, подтвердилось последующими исследованиями. Средние значения концентраций радиоактивных элементов в горных породах приведены в таблице 8, а в таблице 9 дана удельная активность горных пород в отношении естественных радионуклидов по данным ВНИИФТРИ (1996). Из этих данных видна основная геохимическая закономерность уменьшения содержания радиоизотопов с увеличением основности магматических пород. Наибольшее содержание естественных радионуклидов наблюдается в изверженных породах кислого и щелочного состава, богатых калием. Основными носителями радиоактивных элементов в этих породах являются акцессорные минералы: циркон, монацит, ксенотим, ортит, апатит и сфен. Что касается главных породообразующих минералов, то установлено, что салические минералы (в первую очередь полевые шпаты) обладают в среднем в 3 раза большей радиоактивностью, чем фемические. Поэтому на практике существует эмпирическое правило: магматические породы светлых оттенков более радиоактивны, чем темные. Наиболее высокой радиоактивностью среди осадочных пород обладают глинистые сланцы и глины. Содержание радионуклидов в них приближается к таковому в кислых изверженных породах – гранитах. На основании анализа многочисленных диаграмм гамма-каротажа глубоких скважин и результатов лабораторного радиометрического изучения большого количества образцов осадочных горных пород было выявлено, что среди них наименьшей радиоактивностью обладают чистые химические и органические осадки (каменная соль, гипс, известняки, доломиты, кварцевые пески, кремнистые сланцы, яшмы). Морские осадки в целом более радиоактивны, чем континентальные. [ 1 ]

Информация о работе Мониторинг радиационного загрязнения окружающей среды