Фотохимическое образование озона в атмосфере и образование озонового слоя

Автор работы: Пользователь скрыл имя, 24 Января 2014 в 19:10, реферат

Краткое описание

Газообразный озон, открытый в середине прошлого века, долгое время привлекал внимание ученых лишь своими уникальными химическими и физическими свойствами. Интерес к озону существенно возрос, после того, как выяснилась его распространенность в земной атмосфере и та особая роль, которую он играет в защите всего живого от воздействий опасного ультрафиолетового излучения. Особенно активно атмосферный озон стал изучаться в последние десятилетия. С ним, как ни с одним другим газом, в последние два десятилетия было связано несколько крупных сенсаций. Начиная от появившегося в самом начале 70-х годов прогноза о том, что полеты стратосферной авиации “съедят” слой озона уже к 80-м годам, и, кончая пресловутой “озоновой дырой”, которая будоражит умы людей.

Содержание

Введение …………………………………………………………………………3
Фотохимическое образование озона в атмосфере и образование озонового слоя……………………………………………………………………………….4
Волшебный щит планеты ………………………………………………………6
Ядерные взрывы и озон …………………………………………………………7
Разрушение озонового слоя в присутствии соединений водорода. Источники поступления в атмосферу………………………………………………………..9
Разрушение озонового слоя в присутствии хлора. Источники поступления в атмосферу…………………………………………………………………………11
Откуда взялась «дыра»…………………………………………………………..13
Механизмы образования озоновой дыры……………………………………….14
«Состояние озонового слоя над Россией»………………………………………16
Проблемы и пути их решения……………………………………………………17
Заключение………………………………………………………………………...19
Литература…………………………………………………………

Прикрепленные файлы: 1 файл

Реферат - Озоновый слой земли - прогнозы и проблемы.doc

— 121.00 Кб (Скачать документ)

Содержание

Введение …………………………………………………………………………3

Фотохимическое образование озона  в атмосфере и образование озонового слоя……………………………………………………………………………….4

Волшебный щит планеты ………………………………………………………6

Ядерные взрывы и озон …………………………………………………………7

Разрушение озонового слоя в присутствии соединений водорода. Источники поступления в атмосферу………………………………………………………..9

Разрушение озонового слоя в  присутствии хлора. Источники поступления  в атмосферу…………………………………………………………………………11

Откуда взялась «дыра»…………………………………………………………..13

Механизмы образования озоновой дыры……………………………………….14

«Состояние озонового слоя над  Россией»………………………………………16

Проблемы и пути их решения……………………………………………………17

Заключение………………………………………………………………………...19

Литература……………………………………………………………………...….20

 

 

 

 

 

 

 

 

 

Введение

Газообразный озон, открытый в середине прошлого века, долгое время  привлекал внимание ученых лишь своими уникальными химическими и физическими  свойствами. Интерес к озону существенно  возрос, после того, как выяснилась его распространенность в земной атмосфере и та особая роль, которую он играет в защите всего живого от воздействий опасного ультрафиолетового излучения. Особенно активно атмосферный озон стал изучаться в последние десятилетия. С ним, как ни с одним другим газом, в последние два десятилетия было связано несколько крупных сенсаций. Начиная от появившегося в самом начале 70-х годов прогноза о том, что полеты стратосферной авиации “съедят” слой озона уже к 80-м годам, и, кончая пресловутой “озоновой дырой”, которая будоражит умы людей. Гипотезы о возможном разрушении стратосферного озона под действием выброса в атмосферу выхлопных газов от двигателей сверх звуковых самолетов, фреонов, использования удобрений, извержений вулканов и т. д. Неоднократно описывались в литературе. Поскольку озон задерживает активное излучение солнца, то разрушение озонного слоя может привести к целому ряду негативных последствий для растений, животных и человека.В ряду тревожных проблем – сдвиги в мировом климате, истощение лесных, почвенных и водных ресурсов, прогрессирующее опустошение планеты – находится и проблема разрушения озонового слоя. Возможно, что антарктический озон является предвестником глобальных изменений в озоносфере. Озоносфера - одна из поверхностных оболочек планеты. Она является составной частью биосферы Земли, включающей в себя совокупность живых организмов и неорганические вещества, находящиеся в общем круговороте. К изучению процессов, связанных с атмосферным озоном, привлечены значительные силы ученых у нас в стране и за рубежом. Ведутся наблюдения за количеством озона и его “врагов” – различных загрязняющих веществ, анализируются данные за прошедшие годы, ставятся новые эксперименты. Однако проблема атмосферного озона к настоящему времени далеко не исчерпана, и ряд важных и интересных разделов этой проблемы ждет своего разрешения, в особенности явления, связанные с влиянием на озоновый слой некоторых естественных факторов и антропогенных воздействий. Для их осмысления необходимо постоянное и всеобъемлющее слежение за состоянием окружающей среды (мониторинг). Для выработки научно обоснованных выводов и прогнозирования изменений в состоянии озоносферы Земли в отдельных регионах и глобальном масштабе нужны регулярные измерения концентрации озона существующими приборами и разработка новых методов и средств наблюдений озона. Из трех стихий, окружающих человека – тверди, воды и воздуха, -–последняя, является самой уязвимой. И не случайно именно в атмосфере появился первый реальный сигнал бедствия. Этот сигнал – озоновая дыра как вестник возможного глобального уменьшения защитного слоя озона в результате антропогенных загрязнении. Цель работы-изучение  и анализ проблем озонового слоя Земли.

Фотохимическое  образование озона в атмосфере и образование озонового слоя

Озон является аллотропным видоизменением кислорода с трехатомной молекулой O2. Молекула озона не линейна и имеет структуру треугольника с тупым углом при вершине и равными межъядерными расстояниями.                                                                                                            Озон – одна из форм существования химического элемента кислорода в земной атмосфере. Последняя состоит в основном из азота и кислорода. В приземном воздухе, равно как и во всей атмосфере до высоты около 150 км, и азот, и кислород существуют практически только в форме молекул N2 и O9. Однако на всех высотах в атмосфере идут процессы диссоциации (т.е. разрушения молекул), приводящих к появлению атомов N и O. Эти процессы компенсируются быстрыми реакциями обратного соединения атомов в молекулы, поэтому концентрации атомов O и N ниже 100 км очень малы. С увеличением высоты скорость процессов диссоциации растет, а обратных реакций падает, поэтому относительная концентрация атомарных компонентов увеличивается. Но лишь примерно со 100 км атомарный кислород становится одним из основных компонентов атмосферы, а на высоте около 150 км концентрации атомов и молекул кислорода сравниваются. На большой высоте кислород существует уже главным образом в виде атомов. Количество атомарного кислорода (хотя и очень малое) с увеличением высоты над поверхностью Земли растет. Это объясняет и рост с высотой количества молекул O3. Но с некоторого уровня разрушение молекул O3 солнечным излучением растет с высотой быстрее, чем их образование из атомов O, поэтому, начиная с этого уровня (так называемого максимума слоя озона) концентрация озона с высотой начинает уменьшаться.

Процесс образования  озона можно записать в следующем  виде:

Экзотермическая реакция

2О3 ® 3О2 +68 ккал (1)

Эндотермическая реакция

При образовании озона тепло поглощается, а при разложении – выделяется. При нормальной температуре и давлении реакция протекает крайне медленно. Связано это с той важной ролью, которую играет атомарный кислород в реакции образования озона. Итак, все начинается с диссоциации молекулы кислорода на два атома:

O2 + hv ® O + O. (2)

Через hv здесь обозначен  источник диссоциации. Чаще всего это  ультрафиолетовое излучение Солнца, но могут быть и энергитичные частицы, входящие в состав космических лучей.

Образовавшиеся атомы  кислорода либо соединяются вновь между собой в присутствии третьей молекулы М:

O + O ® O2 + М, (3)

Либо взаимодействуют  с молекулой O2 (также в присутствии  третьего тела), образуя молекулу озона:

О2 + О +М ® О3 + М, (4)

Где М – любая частица, необходимая для отвода энергии от образующейся молекулы озона. Для получения озона благоприятными является невысокие температуры и наличие дополнительного неравновесного количества атомарного кислорода. Источником последнего может служить диссоциация молекул кислорода под воздействием потока частиц, ультрафиолетового облучения.Физически молекула озона является стабильной, т. е. она самопроизвольно не разлагается. При небольших концентрациях и отсутствии в газе примесей озон разлагается довольно медленно. Однако при повышении температуры, увеличении добавок некоторых газов (например, NO, Cl2, Br2, I2, и др.), при воздействии излучений и потоков частиц скорость разложения газообразного озона значительно увеличивается. Одно из основных свойств – озона сильная окислительная способность (уступает только F2).Благодаря своим исключительным свойствам атмосферный озон является регулятором потока радиации, достигающей поверхности Земли. История его появления на Земле выглядит следующим образом.Преобразование компонентов земной первичной атмосферы – метана (CH4), воды (H2O), аммиака (NH3) – в “бульон” из органических соединений, где впервые зародилась жизнь, происходило в присутствии интенсивного ультрафиолетового облучения. Однако ультрафиолетовая радиация очень опасна для чувствительного равновесия химических реакций в живых клетках, и, по-видимому, первые организмы выжили только потому, что развивались под слоем воды достаточно мощным. Чтобы защитить их от ультрафиолета. В результате фотосинтетического разложения молекул воды земная атмосфера приобрела свободный кислород. Лишь с появлением кислорода, а затем и озона интенсивность ультрафиолетовой радиации на земной поверхность понизилась достаточно для того, чтобы живые организмы смогли выйти из-под воды и начать заселение суши. Продолжительное существование сухопутной жизни стало возможным благодаря озоновому слою – защите, которая сама явилась продуктом жизни.      Поскольку образование озона происходит главным образом в результате фотохимических реакций в стратосфере, здесь сосредоточена его основная масса (около 85 – 89% атмосферного озона). Фотохимическая реакция, приводящая к образованию озона и состоящая из серии событий, начиная от поглощения света молекулой кислорода и, кончая образованием стабильных молекул, разделяется на первичные и вторичные процессы.    Первичный процесс включает начальный акт поглощение света молекулой, приводящий ее в возбужденное состояние с последующим ее разрушением, результирующими продуктами которого являются два атома кислорода. Как известно, и атомы и молекулы могут находиться только в некоторых дискретных энергетических состояниях, определяемых квантовомеханическими закономерностями. Так, для атома кислорода, возможно, его существование в состояниях, обозначаемых символами іP, №D, №S, где состояния атома О(іP) являются нормальным, а состояния O(№D) и O(№S) – возбужденными. Энергия связей атомов в молекуле кислорода составляет 5,115эВ. Чтобы “разбить” молекулу кислорода, необходим световой квант с энергией, равной энергии связи атомов в молекуле. При поглощении такого кванта молекула кислорода диссоциирует на два нормальных атома. Под действием света с меньшей длиной волны (соответственно с большей энергией кванта) при диссоциации молекулы O2 продуктами распада будут возбужденные атомы кислорода. Пороговые длины волн поглощаемого излучения, при которых происходит фотодиссоциация молекулярного кислорода, таковы:

O2 ® O(3P) + O(3P) – 2424A°, (5)

O2 ® O(3P) + O(1D) – 1750A°, (6)

O2 ® O(3P) + O(1S) – 1332A°. (7)

Таким образом, при облучении  газообразного кислорода ультрафиолетовым излучением могут быть получены значительные концентрации атомарного кислорода, в результате облучения возникают возбужденные его молекулы. Все эти активные частицы вступают во вторичные реакции, аналогичные процессу (4), с образованием конечного продукта – озона.

 

 

 

 

 

 

 

 

 

 

 

Волшебный щит  планеты

В популярной литературе слой озона очень часто называют волшебным щитом планеты. Это  сравнение связано с оптическими  свойствами молекулы озона, которые  отличаются от свойств как составляющих его атомов (когда они существуют по отдельности), так и двухатомных молекул O2. Одной из наиболее важных оптических характеристик, какого–либо вещества является его спектр поглощения – изменение с длинной волны коэффициента поглощения, то есть способности поглощать проходящие через это вещество излучение.                                                Спектр поглощения озона обладает несколькими важными особенностями, главной из них является способность сильно поглощать излучение в интервале длин волн 200–320нм. Область солнечного спектра (а когда говорят о щите, то имеют в виду именно защиту от излучения Солнца) от 200 до 400нм называют биологически активным ультрафиолетом БАУ. При этом выделяются интервалы 320–400нм (УФ-А) и 200–320нм (УФ-Б). Излучение с длиной волны l, меньше 200нм, хорошо поглощается молекулами кислорода, которых в атмосферном газе много. Поэтому такое излучение не доходит даже до нижней части стратосферы, “застревая” (т.е. поглощаясь молекулами O2) на больших высотах. С увеличением длины волны коэффициент поглощения молекулярным кислородом быстро падает. Молекулы же азота, которых в атмосфере больше всего, вообще пассивны и в поглощении этого излучения практически участия не принимают. Вот и получается, что солнечное излучение с длиной волны от 200 – 300нм проникало бы сквозь атмосферу практически до поверхности Земли, если бы не озон. Его коэффициент поглощения k именно в этой области длин волн очень велик и намного превосходит соответствующие значения k для O2 и N2. В результате – излучение УФ-Б не проходит сквозь стратосферу, практически полностью поглощаясь молекулами O3. Не загружая изложение деталями спектральных характеристик озона, приведу лишь один пример. Максимальное значение k для озона приходится на l = 255нм и составляет около 130 см⁻1. Чтобы легче было представить масштаб этой величины, скажу, что, пройдя через слой озона толщиной в 3 мм при нормальном давлении, излучение, с этой длиной волны уменьшится в 10⁻17. В целом же эффект волшебного щита именно таков – очень тонкий (всего 2-3 мм!) слой молекул O3 практически полностью поглощает идущее от солнца излучение в области УФ-Б. Начиная примерно с l =320нм солнечное излучение уже доходит до поверхности, хотя точную границу по очевидным причинам назвать невозможно – переход происходит постепенно, а проникновение излучения зависит от многих факторов – таких, как высота Солнца над горизонтом, чистота или запыленность атмосферы, высота места над уровнем моря и т.д.

 

 

 

Ядерные взрывы и озон.

Существует еще один антропогенный источник азотных окислов, который может влиять на жизнь стратосферного озона. Речь идет о ядерных взрывах. За счет сильного нагрева газа (в тепловую энергию переходит около трети всей энергии взрыва) и частично за счет мощного излучения состав воздуха в области взрыва сильно изменяется,– в нем появляется много азотных окислов. Сама вспышка излучения длится не очень долго, да и падение температуры после внезапного нагрева происходит достаточно резко. Однако быстро вернуться назад к исходному состоянию газа с измененным составом уже не может – время жизни относительно динамических и химических процессов составляет часы. В результате облако с высокой “добавкой” азотных окислов будет, постепенно расширяясь существовать большое время (некоторое превышение концентрации NOx над нормальным значением может наблюдаться и через сутки после взрыва). По разным оценкам, при взрыве образуется от 1 до 10 килотонн NOx на 1 мегатонну мощности. На первой стадии в облаке присутствует в основном двуокись азота NO2. Именно ей облако обязано своим желтоватым цветом. При остывании облака происходит перераспределение азотных радикалов, и в облаке появляются другие окислы, прежде всего NO. На стадии, когда горизонтальный диаметр облака составляет несколько километров, концентрация молекул NOx в нем равна примерно10 в 12 степени см в –3 степени. Эта величина близка к концентрации самого озона в максимуме его слоя. Зная степень воздействия азотных окислов на озон можно заключить, что атомные взрывы должны разрушать стратосферный озон. А что на самом деле? При обсуждении влияния высотных взрывов на озон нужно различать кратковременные и долговременные эффекты. Вряд ли можно ожидать, что в облаке, насыщенном окислами азота сохранится неизменным. Однако по теоретическим моделям дают уменьшение концентрации озона в области максимума слоя в 3-30 раз в зависимости от параметров взрыва. Измерить, однако, такие эффекты достаточно трудно, кроме того, в последние полтора десятилетия высотные взрывы не проводятся (основная серия была в 60-ч годах), и поэтому нет возможности проверить теоретические оценки изменения концентрации озона с помощью наблюдений современными методами. Серии высотных ядерных испытаний 60-ч годов привели в сумме к образованию в стратосфере дополнительно большого количества азота, сравнимо с их естественным источником. Так, в 1961г. ядерный источник NOx дал примерно 600 килотонн, а в 1962 г. – 1100 килотонн, что лишь немного меньше естественного поступления NOx – 1600 килотонн в год. Казалось бы такая “добавка” к обычному фону азотных соединений не могла сказаться на количестве озона в эти годы в глобальном масштабе. Однако все попытки найти по мировой сети озонометрических станций тех времен следы какого-либо систематического уменьшения концентрации озона в этот период не дали определенного результата. Более того, по некоторым данным количество озона в последующие годы даже возросло. Не удалось обнаружить глобальных эффектов в концентрации озона и после высотных ядерных взрывов весной 1970г., хотя тогда уже велись наблюдения концентрации озона со спутника “Нимбус-4”. Все эти данные поставили под сомнение даже сам факт отрицательного влияния высотных взрывов на количество озона и позволили некоторым ученым высказать предположение, что в результате всего комплекса процессов, проходящих в облаке, количество озона может не уменьшаться, а возрастать. Более реальным с позиции сегодняшних знаний о физике стратосферного озона, представляется уменьшение концентрации озона в результате взрыва.

Информация о работе Фотохимическое образование озона в атмосфере и образование озонового слоя