Автор работы: Пользователь скрыл имя, 17 Декабря 2012 в 11:37, реферат
Функционированию и развитию многих экономических процессов присущи элементы неопределенности. Это обуславливает появление ситуаций, не имеющих однозначного исхода (решения). Если существует возможность качественно и количественно определять степень вероятности того или иного варианта, то это будет ситуация риска.
Отсюда следует, что рискованная (рисковая) ситуация связана со статистическими процессами и ей сопутствуют три условия:
наличие неопределенности;
необходимость выбора альтернативы;
Если при принятии решения ЛПР известны вероятности pj того, что реальная ситуация может развиваться по варианту j, то говорят, что ЛПР находится в условиях частичной неопределенности. В этом случае можно руководствоваться одним из следующих критериев (правил).
Критерий (правило) максимизации среднего ожидаемого дохода. Этот критерий называется также критерием максимума среднего выигрыша. Если известны вероятности pj вариантов развития реальной ситуации, то доход, получаемый при i-ом решении, является случайной величиной Qi с рядом распределения
qi1 |
qi2 |
… |
qin |
p1 |
p2 |
… |
pn |
Математическое ожидание M[Qi ] случайной величины Qi и есть средний ожидаемый доход, обозначаемый также :
= M[Qi ] = .
Для каждого i-го варианта решения рассчитываются величины , и в соответствии с рассматриваемым критерием выбирается вариант, для которого достигается
Пример 2.6. Пусть для исходных данных примера 2.1 известны вероятности развития реальной ситуации по каждому из четырех вариантов, образующих полную группу событий:
p1 =1/2, p2=1/6, p3=1/6, p4=1/6. Выяснить, при каком варианте решения достигается наибольший средний доход и какова величина этого дохода.
Решение. Найдем для каждого i-го варианта решения средний ожидаемый доход: =1/2*5+1/6*2+1/6*8+1/6*4= 29/6, = 25/6, = 7, = 17/6. Максимальный средний ожидаемый доход равен 7 и соответствует третьему решению.
Правило минимизации среднего ожидаемого риска (другое название –критерий минимума среднего проигрыша).
В тех же условиях, что и в предыдущем случае, риск ЛПР при выборе i-го решения является случайной величиной Ri с рядом распределения
ri1 |
ri2 |
… |
rin |
p1 |
p2 |
… |
pn |
Математическое ожидание M[Ri] и есть средний ожидаемый риск, обозначаемый также : = M[Ri] = .. Правило рекомендует принять решение, влекущее минимальный средний ожидаемый риск: .
Пример 2.7. Исходные данные те же, что и в примере 2.6. Определить, при каком варианте решения достигается наименьший средний ожидаемый риск, и найти величину минимального среднего ожидаемого риска (проигрыша).
Решение. Для каждого i-го варианта решения найдем величину среднего ожидаемого риска. На основе заданной матрицы риска R найдем: = 1/2*3+1/6*3+1/6*0+1/6*8=20/6, = 4, = 7/6, = 32/6.
Следовательно, минимальный
средний ожидаемый риск равен 7
Замечание. Когда говорят о среднем ожидаемом доходе (выигрыше) или о среднем ожидаемом риске (проигрыше), то подразумевают возможность многократного повторения процесса принятия решения по описанной схеме или фактическое неоднократное повторение такого процесса в прошлом. Условность данного предположения заключается в том, что реально требуемого количества таких повторений может и не быть.
Критерий (правило) Лаплпаса равновозможности (безразличия). Этот критерий непосредственно не относится к случаю частичной неопределеннос-ти, и его применяют в условиях полной неопределенности. Однако здесь предполагается, что все состояния среды (все варианты реальной ситуации) равновероятны – отсюда и название критерия. Тогда описанные выше схемы расчета можно применить, считая вероятности pj одинаковыми для всех вариантов реальной ситуации и равными 1/n. Так, при использовании критерия максимизации среднего ожидаемого дохода выбирается решение, при котором достигается . А в соответсвии с критерием минимизации среднего ожидаемого риска выбирается вариант решения, для которого обеспечивается .
Пример 2.8. Используя критерий Лапласа равновозможности для исходных данных примера 2.1, выбрать наилучший вариант решения на основе: а) правила максимизации среднего ожидаемого дохода; б) правила минимизации среднего ожидаемого риска.
Решение. а) С учетом равновероятности вариантов реальной ситуации величины среднего ожидаемого дохода для каждого из вариантов решения составляют = (5+2+8+4)/4=19/4, = 21/4, = 26/4, = 15/4. Следовательно, наилучшим вариантом решения будет третий, и максимальный средний ожидаемый доход буде равен 26/4.
б) Для каждого варианта
Из рассмотренного выше следует, что каждое решение (финансовая операция) имеет две характеристики, которые нуждаются в оптимизации: средний ожидаемый доход и средний ожидаемый риск. Таким образом, выбор наилучшего решения является оптимизационной двухкритериальной задачей. В задачах многокритериальной оптимизации основным понятием является понятие оптимальности по Парето. Рассмотрим это понятие для финансовых операций с двумя указанными характеристиками.
Пусть каждая операция а имеет две числовые характеристики Е(а), r(а) (например, эффективность и риск); при оптимизации Е стремятся увеличить, а r уменьшить.
Существует несколько способов постановки таких оптимизационных задач. Рассмотрим такую задачу в общем виде. Пусть А — некоторое множество операций, и разные операции обязательно различаются хотя бы одной характеристикой. При выборе наилучшей операции желательно, чтобы Е было больше, а r меньше.
Будем говорить, что операция а доминирует операцию b, и обозначать а > b, если Е(а) ≥ Е(b) и r(a) ≤ r(b) и хотя бы одно из этих неравенств строгое. При этом операция а называется доминирующей, а операция b – доминируемой. Очевидно, что никакая доминируемая операция не может быть признана наилучшей. Следовательно, наилучшую операцию надо искать среди недоминируемых операций. Множество недоминируемых операций называется множеством (областью) Парето или множеством оптимальности по Парето.
Для множества Парето справедливо утверждение: каждая из характеристик Е, r является однозначной функцией другой, т.е. на множестве Парето по одной характеристике операции можно однозначно определить другую.
Вернемся к анализу финансовых решений в условиях частичной неопределенности. Как показано в разделе 2.3, каждая операция характеризуется средним ожидаемым риском и средним ожидаемым доходом . Если ввести прямоугольную систему координат, на оси абсцисс которой откладывать значения , а на оси ординат – значения , то каждой операции будет соответствовать точка ( , ) на координатной плоскости. Чем выше эта точка на плоскости, тем доходнее операция; чем правее точка, тем более рисковая операция. Следовательно, при поиске недоминируемых операций (множества Парето) нужно выбирать точки выше и левее. Таким образом, множество Парето для исходных данных примеров 2.6 и 2.7 состоит только из одной третьей операции.
Для определения лучшей операции в ряде случаев можно применять некоторую взвешивающую формулу, в которую характеристики и входят с определенными весами, и которая дает одно число, задающее лучшую операцию. Пусть, например, для операции i с характеристиками ( , ) взвешивающая формула имеет вид f(i) = 3 - 2 , и наилучшая операция выбирается по максимуму величины f(i). Эта взвешивающая формула означает, что ЛПР согласен на увеличение риска на три единицы, если доход операции увеличится при этом не менее, чем на две единицы. Таким образом, взвешивающая формула выражает отношение ЛПР к показателям дохода и риска.
Пример 2.9. Пусть исходные данные те же, что и в примерах 2.6 и 2.7, т.е. для матриц последствий и риска примера 2.1 известны вероятности вариантов развития реальной ситуации: p1 =1/2, p2=1/6, p3=1/6, p4=1/6. В этих условиях ЛПР согласен на увеличение риска на две единицы, если при этом доход операции увеличится не менее, чем на одну единицу. Определить для этого случая наилучшую операцию.
Решение. Взвешивающая формула имеет вид f(i) = 2 - . Используя результаты расчетов в примерах 2.6 и 2.7, находим:
f(1) = 2*29/6 – 20/6 = 6,33; f(2) = 2*25/6 – 4 = 4,33;
f(3) = 2*7 – 7/6 = 12,83; f(4) = 2*17/6 – 32/6 = 0,33
Следовательно, лучшей является третья операция, а худшей – четвертая.
Портфель – это совокупность различных инвестиционных инструментов, которые собраны воедино для достижения конкретной инвестиционной цели вкладчика. В портфель могут входить бумаги только одного типа, например акции или облигации, или различные инвестиционные ценности, такие как акции, облигации, депозитные и сберегательные сертификаты и т. д.
Портфельный менеджмент, т. е. формирование инвестиционного портфеля ценных бумаг, берет свое начало примерно с тех времен, когда появились сами ценные бумаги. Методология же инвестиционного менеджмента начала складываться в двадцатые годы с появлением понятия <истинной> цены (fair price) акции. Задача инвестора состояла в том, чтобы приобрести недооцененные акции, чья рыночная цена на момент покупки ниже истинной, и избавиться от переоцененных бумаг и тем самым получить в перспективе максимальную прибыль. Эта цель не менее актуальна и сейчас.
Начало современной теории финансового портфеля было заложено в статье Гарри Марковица «Выбор портфеля» (1952). В этой статье была предложена математическая модель формирования оптимального портфеля ценных бумаг и были приведены методы построения таких портфелей при определенных условиях. С вычислительной точки зрения получающаяся оптимизационная задача относится к классу задач квадратической оптимизации при линейных ограничениях. К настоящему времени вместе с задачами линейного программирования это один из наиболее изученных классов оптимизационных задач, для которых разработано большое число достаточно эффективных алгоритмов.
затем в работах Вильяма Шарпа (1964) и Джона Литнера (1965), и было основано на понятиях систематического (рыночного) и несистематического рисков ценной бумаги.
Риск (в литературе
также встречается термин
Главная цель в формировании портфеля состоит в достижении оптимального сочетания между риском и доходом для инвестора, т. е. соответствующий набор инвестиционных инструментов призван снизить до минимума риск его потерь и одновременно максимизировать его доход.
Для получения количественных характеристик инвестиционного портфеля могут использоваться следующие показатели:
где xi - доли инвестиций, помещенных в каждый из видов активов (эти доли называют портфельными весами) XT=(х1, х2, … хn);
mi - ожидаемая ставка дохода по каждому виду активов.
s2p =V p = XT*COV*X , (4.2.)
где COV- ковариационная матрица1 порядка n.
ковариация - это статистическая мера взаимодействия двух случайных переменных, таких, например, как доходности двух ценных бумаг. Положительное значение ковариации показывает, что доходности этих ценных бумаг имеют тенденцию изменяться в одну сторону. Ковариация между двумя акциями x и y рассчитывается следующим образом:
Знак коэффициента корреляции совпадает со знаком ковариации, поэтому положительная его величина означает однонаправленное изменение переменных, а отрицательная – их изменение в противоположных направлениях. Если значение ri,j близко к нулю, связь между переменными слабая. Кроме того, процедура стандартизации приводит к тому, что коэффициент корреляции принадлежит интервалу от – 1.0 до +1.0. Отметим также, что формула (4.4) может использоваться для расчета ковариации: Ковариация может быть выражена как произведение коэффициента корреляции ri,j и двух стандартных отклонений:
COVi,j = ri,j ´si ´sj,
si - стандартное отклонение дохода по i –ому активу,
Информация о работе Причины возникновения экономического риска