Автор работы: Пользователь скрыл имя, 11 Ноября 2014 в 13:06, курсовая работа
Актуальность исследования: в современных условиях хозяйствования финансовый сектор, в том числе такая его составляющая, как кредитные институты (банки), является важнейшим инфраструктурным элементом, способствующим укреплению и всестороннему развитию рыночной экономики. Перемены, происходящие в экономике России, предполагают существенные изменения во взаимоотношениях между коммерческими банками и субъектами хозяйствования. Высокая рискованность банковской деятельности главным образом связана с условиями и результатами деятельности его клиентов. Кредитные операции банка являются ведущими среди прочих как по прибыльности, так и по масштабности размещения средств.
Среди подходов к оценке кредитоспособности заемщиков можно выделить две группы моделей:
1) Классификационные модели;
2) Модели на основе комплексного анализа [8. С.33].
Классификационные модели дают возможность группировать заемщиков: прогнозные модели позволяют дифференцировать их в зависимости от вероятности банкротства; рейтинговые - в зависимости от их категории, устанавливаемой с помощью группы рассчитываемых финансовых коэффициентов и присваиваемых им уровней значимости. К классификационным моделям относятся следующие методы:
1. Рейтинговая оценка (общая сумма баллов) рассчитывается путем умножения значения показателя на его вес (коэффициент значимости) в интегральном показателе. В мировой практике при оценке кредитоспособности на основе системы финансовых коэффициентов применяются в основном следующие пять групп коэффициентов: ликвидности, оборачиваемости, финансового рычага, прибыльности, обслуживания долга.
Американский ученый Э. Рид предложил следующую систему показателей, определяющих различные характеристики кредитоспособности предприятия: ликвидности, оборачиваемости, привлечения средств, прибыльности. Эта система позволяет прогнозировать своевременность совершения будущих платежей, ликвидность и реальность оборотных активов, оценить общее финансовое состояние фирмы и ее устойчивость, а также возможность определить границы снижения объема прибыли, в которых осуществляется погашение части фиксированных платежей.
Другая группа ученых (Дж. Шим, Дж. Сигел, Б. Нидлз, Г. Андерсон, Д. Колдвел) предложила использовать группы показателей, характеризующих ликвидность, прибыльность, долгосрочную платежеспособность и показатели, основанные на рыночных критериях. В отличие от методики Э. Рида этот подход позволяет прогнозировать долгосрочную платежеспособность с учетом степени защищенности кредиторов от неуплаты процентов (коэффициента покрытия процента). Коэффициенты, основанные на рыночных критериях, включают отношение цены акции к доходам, размер дивидендов и рыночный риск. С их помощью определяются отношение текущего биржевого курса акций к доходам в расчете на одну акцию, текущая прибыль их владельцев, изменчивость курса акций фирмы относительно курсов акций других фирм. Однако расчет некоторых коэффициентов сложен и требует применения специальных статистических методов. На практике каждый коммерческий банк выбирает для себя определенные коэффициенты и решает вопросы, связанные с методикой их расчета. Этот подход позволяет охарактеризовать финансовое состояние заемщика на основе синтезированного показателя-рейтинга, рассчитываемого в баллах, присваиваемых каждому значению коэффициента. В соответствии с баллами устанавливается класс организации: первоклассная, второклассная, третьеклассная или неплатежеспособная. Класс организации принимается банком во внимание при разработке шкалы процентных ставок, определении условий кредитования, установлении режима кредитования (форма кредита, размер и вид кредитной линии и т.д.), оценке качества кредитного портфеля, анализе финансовой устойчивости банка [16. С.551].
2. Кредитный скоринг - технический
прием, являющийся модификацией
рейтинговой оценки и
- необходимость тщательного
- важность обоснования
- необходимость обоснования
- определение величины
- при рейтинговой оценке
- финансовые коэффициенты
- рассчитываемые коэффициенты
показывают лишь отдельные
- в системе рассчитываемых
3. Прогнозные модели, получаемые с помощью статистических методов, используются для оценки качества потенциальных заемщиков. При множественном дискриминантном анализе (МДА) используется дискриминантная функция (Z), учитывающая некоторые параметры (коэффициенты регрессии) и факторы, характеризующие финансовое состояние заемщика (в том числе финансовые коэффициенты). Коэффициенты регрессии рассчитываются в результате статистической обработки данных по выборке фирм, которые либо обанкротились, либо выжили в течение определенного времени. Если Z-оценка фирмы находится ближе к показателю средней фирмы-банкрота, то при условии продолжающегося ухудшения ее положения она обанкротится. Если менеджеры фирмы и банк предпримут усилия для устранения финансовых трудностей, то банкротство, возможно, не произойдет. Таким образом, Z-оценка является сигналом для предупреждения банкротства фирмы. Применение данной модели требует обширной репрезентативной выборки фирм по разным отраслям и масштабам деятельности. Сложность заключается в том, что не всегда можно найти достаточное число обанкротившихся фирм внутри отрасли для расчета коэффициента регрессии.
Наиболее известными моделями МДА являются модели Альтмана и Чессера, включающие следующие показатели: отношение собственных оборотных средств к сумме активов; отношение реинвестируемой прибыли к сумме активов; отношение рыночной стоимости акций к заемному капиталу; отношение объема продаж (выручки от реализации) к сумме активов; отношение брутто-прибыли (прибыли до вычета процентов и налогов) к сумме активов.
Организацию относят к определенному классу надежности на основе значений Z-индекса модели Альтмана. Пятифакторная модель Альтмана построена на основе анализа состояния 66 фирм и позволяет дать достаточно точный прогноз банкротства на два-три года вперед. В более поздних работах ученый изучил такие факторы, как капитализируемые обязательства по аренде, применил сглаживание данных для устранения случайных колебаний. Новая модель с высокой с степенью точности предсказывает банкротство на два года вперед и с меньшей вероятностью (примерно 70%) - на пять лет вперед. Построение в российских условиях подобных моделей достаточно сложно из-за отсутствия статистических данных о банкротстве организаций, постоянного изменения нормативной базы в области банкротства и признания банкротства организации на основе данных, не поддающихся учету.
Модель Чессера позволяет прогнозировать невыполнение клиентом условий договора о кредите. Невыполнение подразумевает не только непогашение кредита, но и любые другие отклонения, делающие отношения между кредитором и заемщиком менее выгодными по сравнению с первоначальными условиями. Используемая линейная комбинация независимых переменных (Z) включает: отношение кассовой наличности и стоимости легко реализуемых ценных бумаг к сумме активов; отношение чистой суммы продаж (без учета НДС) к сумме кассовой наличности и стоимости легко реализуемых ценных бумаг; отношение брутто-дохода (прибыли до вычета процентов и налогов) к сумме активов; отношение совокупной задолженности к сумме активов; отношение основного капитала к величине чистых активов (или применяемого капитала, равного акционерному капиталу и долгосрочным кредитам); отношение оборотного капитала к нетто-продажам (чистой сумме продаж). Получаемый показатель может рассматриваться как оценка вероятности невыполнения условий кредитного договора. Чессер использовал данные ряда банков по 37 «удовлетворительным» и 37 «неудовлетворительным» кредитам и для расчета взял показатели балансов фирм-заемщиков за год до получения кредита. Подставив расчетные показатели модели в формулу вероятности нарушения условий договора, Чессер правильно определил три из каждых четырех исследуемых случаев.
Отечественные дискриминантные модели прогнозирования банкротства представлены двухфакторной моделью М. Федотовой и пятифакторной моделью Р. Сайфулина, Г. Кадыкова. Модель оценки вероятности банкротств Федотовой опирается на коэффициент текущей ликвидности (Х1) и долю заемных средств в валюте баланса (Х2).
В уравнении Сайфулина, Кадыкова используются следующие коэффициенты: коэффициент обеспеченности собственными средствами (нормативное значение Х1 > 0,1); коэффициент текущей ликвидности (Х2> 2); интенсивность оборота авансируемого капитала, характеризующая объем реализованной продукции, приходящейся на 1 руб. средств, вложенных в деятельность организации (Х3 >2,5); рентабельность продаж, рассчитываемая как отношение прибыли от продаж к выручке (для каждой отрасли индивидуальная); рентабельность собственного капитала (Х5>0,2). При полном соответствии значений финансовых коэффициентов минимальным нормативным уровням Z = 1 финансовое состояние заемщика с рейтинговым числом менее 1 характеризуется как неудовлетворительное.
Помимо МДА-моделей прогнозирования вероятного банкротства заемщика могут использоваться и упрощенные модели, основанные на системе определенных показателей. К примеру, система показателей Бивера включает: коэффициент Бивера (КБивера); рентабельность активов; финансовый рычаг; коэффициент покрытия активов собственным оборотным капиталом; коэффициент покрытия краткосрочных обязательств оборотными активами. Коэффициент Бивера равен отношению разницы чистой прибыли и амортизации к сумме долгосрочных и краткосрочных обязательств. Значение КБивера ? - 0,15 свидетельствует о неблагополучном финансовом состоянии за год до банкротства, как и значение коэффициента покрытия активов чистым оборотным капиталом меньше 0,06, а коэффициента покрытия краткосрочных обязательств меньше 1.
4. Модель CART (Classification and regression trees - «классификационные
и регрессионные деревья») - непараметрическая
модель, основные достоинства которой
заключаются в возможности
5. Методика на основе анализа
денежных потоков позволяет
В случае использования математических моделей не учитывается влияние «качественных» факторов при предоставлении банками кредитов. Эти модели лишь отчасти позволяют кредитным экспертам банка сделать вывод о возможности предоставления кредита. Недостатками классификационных моделей являются их «замкнутость» на количественных факторах, произвольность выбора системы количественных показателей, высокая чувствительность к недостоверности исходных данных, громоздкость при использовании статистических межотраслевых и отраслевых данных. В рамках комплексных моделей анализа возможно сочетание количественных и качественных характеристик заемщика. Можно выделить следующие методы:
Информация о работе Кредитоспособность и факторы, ее определяющие