Методы прогнозирования на основе анализа временных рядов

Автор работы: Пользователь скрыл имя, 13 Апреля 2015 в 19:39, контрольная работа

Краткое описание

Существует множество математических моделей, посредством которых решаются те, или иные задачи. Во всех сферах деятельности человека важным моментом является прогнозирование последующих событий. Сейчас существует более 100 методов и методик прогнозирования, Условно их можно разделить на фактографические и экспертные. Фактографические методы основаны на анализе информации об объекте, а экспертные – на суждениях экспертов, которые получены при проведении коллективных или индивидуальных опросов.

Содержание

Введение
1. Методы прогнозирования на основе анализа временных рядов.
2. Мультивариантный анализ временных рядов.
3. Автокорреляционный анализ.
4. Экспоненциональное сглаживание (EXPO).
5. Метод прогноза Бокса и Дженкинса.
Заключение
Список используемой литературы.

Прикрепленные файлы: 1 файл

МЕТОДЫ МОДЕЛИРОВАНИЯ И ПРОГНОЗИРОВАНИЯ.docx

— 57.12 Кб (Скачать документ)

Предположим, что на первый квартал прогноз продаж составил 3. И пусть коэффициент сглаживания W =0,8.

Заполним в таблице третий столбец, подставляя для каждого последующего квартала значение предыдущего по формуле:

Для 2 квартала F2 =0,8*4 (1-0,8)*3 =3,8 
Для 3 квартала F3 =0,8*6 (1-0,8)*3,8 =5,6

Аналогично, рассчитывается сглаженное значение для коэффициента 0,5 и 0,33.

 

Расчет прогноза объема продаж

Прогноз объема продаж при W = 0.8 на 13 квартал составил 13.3 тыс.руб.

Эти данные можно представить в графической форме:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Метод прогноза Бокса и Дженкинса.

 

В середине 90-х годов прошлого века был разработан принципиально новый и достаточно мощный класс алгоритмов для прогнозирования временных рядов. Большую часть работы по исследованию методологии и проверке моделей была проведена двумя статистиками, Г.Е.П. Боксом (G.E.P. Box) и Г.М. Дженкинсом (G.M. Jenkins). С тех пор построение подобных моделей и получение на их основе прогнозов иногда называться методами Бокса-Дженкинса. Более подробно иерархию алгоритмов Бокса-Дженкинса мы рассмотрим чуть ниже, пока же отметим, что в это семейство входит несколько алгоритмов, самым известным и используемым из них является алгоритм ARIMA. Он встроен практически в любой специализированный пакет для прогнозирования. В классическом варианте ARIMA не используются независимые переменные. Модели опираются только на информацию, содержащуюся в предыстории прогнозируемых рядов, что ограничивает возможности алгоритма. В настоящее время в научной литературе часто упоминаются варианты моделей ARIMA, позволяющие учитывать независимые переменные. В данном учебнике мы их рассматривать не будем, ограничившись только общеизвестным классическим вариантом. В отличие от рассмотренных ранее методик прогнозирования временных рядов, в методологии ARIMA не предполагается какой-либо четкой модели для прогнозирования данной временной серии. Задается лишь общий класс моделей, описывающих временной ряд и позволяющих как-то выражать текущее значение переменной через ее предыдущие значения. Затем алгоритм, подстраивая внутренние параметры, сам выбирает наиболее подходящую модель прогнозирования. Как уже отмечалось выше, существует целая иерархия моделей Бокса-Дженкинса. Логически ее можно определить так

AR(p)+MA(q)->ARMA(p,q)->ARMA(p,q)(P,Q)->ARIMA(p,q,r)(P,Q,R)->...

AR(p) -авторегрессионая модель порядка p.

Модель имеет вид  Y(t)=f_0+f_1*Y(t-1)+f_2*Y(t-2)+...+f_p*Y(t-p)+E(t)

Где:

Y(t)-зависимая переменная в момент времени t. f_0, f_1, f_2, ..., f_p - оцениваемые параметры. E(t) - ошибка от влияния переменных, которые не учитываются в данной модели. Задача заключается в том, чтобы определить f_0, f_1, f_2, ..., f_p. Их можно оценить различными способами. Правильнее всего искать их через систему уравнений Юла-Уолкера, для составления этой системы потребуется расчет значений автокорреляционной функции. Можно поступить более простым способом - посчитать их методом наименьших квадратов.

MA(q) -модель со скользящим средним порядка q.

Модель имеет вид:

Y(t)=m+e(t)-w_1*e(t-1)-w_2*e(t-2)-...-w_p*e(t-p)

Где Y(t)-зависимая переменная в момент времени t. w_0, w_1, w_2, ..., w_p - оцениваемые параметры.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение

 

Для временных рядов главный интерес представляет описание или моделирование их структуры. Цель таких исследований, как правило, шире моделирования, хотя некоторую информацию можно получить и непосредственно из модели, делая выводы о выполнении тех или иных экономических законов (скажем, закона паритета покупательной способности) и проверяя различные гипотезы. Построенная модель может использоваться для экстраполяции или прогнозирования временного ряда, и тогда качество прогноза может служить полезным критерием при выборе среди нескольких моделей. Построение хороших моделей ряда необходимо и для других приложений, таких, как корректировка сезонных эффектов и сглаживание. Наконец, построенные модели могут использоваться для статистического моделирования длинных рядов наблюдений при исследовании больших систем, для которых временной ряд рассматривается как входная информация.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список используемой литературы

 

1. А.О. Крыштановский. Методы анализа временных рядов // Мониторинг общественного мнения: экономические и социальные перемены. 2000. № 2 (46). С. 44-51. [Статья]

2. Прогнозирование и планирование  в условиях рынка: Учеб. пособие для Вузов / Под. ред. Т.Г. Морозовой, А.В. Пикулькина. – М.: ЮНИТИ – ДАНА, 1999.

3. Бокс Дж., Дженкинс Г. (1974) Анализ временных рядов. Прогноз и управление. - М.: Мир, 1974. -Вып. 1, 2.

4. Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003. — 416 с.

5. Федосеев В.В. Экономикматематические модели и прогнозирование рынка труда: Учеб. Пособие. – М.: Вузовский учебник, 2005 – 144 ст.

6. Дуброва Т.А. Прогнозирование социально экономических процессов. Статистические методы и модели: уч. пособие. – М.: Маркет ДС, 2007. – 192 с.

7. Садовникова Н.А., Шмойлова Р.А. Анализ временных рядов и прогнозирование. Учебное пособие./ Московский международный институт эконометрики информатики, финансов и права – М., 2002 г., 67 с.

 

 


Информация о работе Методы прогнозирования на основе анализа временных рядов