Өсімдіктер экологиясы және өсімдіктердің алантүрліліг

Автор работы: Пользователь скрыл имя, 22 Декабря 2013 в 17:46, практическая работа

Краткое описание

Жер бетінде алғашқы пайда болған тірі организмдер өсімдікте жәндікте емес – ультрабактериялар, олар өздері өмір сүретін ортаға өте бейім келеді. Олардың кейбірулері тіпті тастарда да өсе бастаған. Олар өздеріне керекті көмірқышқылы газы мен азотты ауадан ғана емес тастан да алды. Сөйтіп олар тіпті тасты бірті-бірте бұзып , бүлдіре бастады. Ал үгілген ұнтақталған тау жыныстары оларға таптырмас мекен болды.
Бұл микрооргаизмдер табиғаттың ыстық–суығын, оттегінің барын я жоғын, ортаның қышқылдығын, я сілітілгін таңдамады.

Прикрепленные файлы: 1 файл

Өсімдіктер экологиясы және өсімдіктердің алантүрлілігі п4.docx

— 235.78 Кб (Скачать документ)

Генотиптің өзгеру сипатына қарай  мутациялар гендік, хромосомалық, геномдық және цитоплазмалық болып бөлінеді.

Гендік мутация. Мутацияның мұндай түрі жекелеген гендерде болады және жиі кездеседі. Гендік мутация ДНҚ молекуласындағы нуклеотидтердің орналасу ретінің өзгеруіне байланысты болады. Мысалы, ДНҚ құрамындағы қатар тұрған екі нуклеотидтің орын алмастыруы немесе бір нуклеотидтің түсіп қалуы мүмкін. Соның салдарынан генетикалық код өзгереді де, тиісті белок синтезделмей қалады немесе синтезделген белоктың қасиеті өзгереді. Ол ақыр аяғында келіп, организм белгісінің өзгеруіне апарып соғады. Гендік мутацияның нәтижесінде жаңа аллельдер пайда болады. Оның эволюция мен селекция үшін үлкен маңызы бар. Мысалы, селекцияда өсімдіктердің жаңа сорттарын, жануарлардың тұқымдарын және микроорганизмдердің жаңа түрлерін алу үшін қажетті материал ретінде пайдаланылады.

Хромосомалық мутация. Хромосомалық мутация түрлі хромосомалық өзгерістерге байланысты болады. Бұл жағдайда хромосомалардың құрылымы өзгереді. Ондай өзгерістер хромосома ішілік және хромосома аралық болып келеді. Хромосома ішілік өзгерістерге мыналар жатады: дефишенсия — хромосома  ұштарының жетіспеушілігі; делеция — хромосоманың бір бөлігінің үзіліп түсіп қалуы; инверсия — хромосома бөлігінің 180Ә-қа бұрылуына байланысты гендердің орналасу ретінің өзгеруі; дупликация — хромосоманың белгілі бір бөлігінің екі еселенуі.

Хромосома аралық өзгерістерге хромосоманың бір бөлігінің оған ұқсас емес басқа бір хромосомамен ауысып кетуі  жатады, оны транслокация дейді. Сол  сияқты бұған хромосомалар арасында көпірлердің пайда болуын да жатқызуға  болады.

Геномдық мутация. Геномдық мутация дегеніміз — клеткадағы хромосомалар санының өзгеруіне байланысты болатын өзгергіштік. Геном  дегеніміздің өзі гаплоидты хромосомаларда болатын гендердің жиынтығы. Енді осы геномдық мутацияның пайда болу жолын қарастырайық. Хромосомалар санының тұрақтылығын және олардың ұрпақтан-ұрпаққа берілуін қамтамасыз етіп отыратын клетканың бөліну механизмдері — митоз бен мейоз екендігі белгілі. Бірақ кейбір жағдайда бұл механизмдер бұзылады да, хромосомалар клеткадағы екі полюске теңдей ажырамайды. Соның салдарынан хромосома  саны өзгерген клеткалар пайда болады. Геномдық мутация хромосома  санының гаплоидты жиынтыққа еселеніп немесе еселенбей өзгеруіне байланысты. Егер еселеніп көбейсе оны полиплоидия, ал еселенбей көбейсе не азайса — анеуплоидия немесе гетероплоидия деп атайды.

Полиплоидты организмдер хромосома  санының еселену дәрежесіне қарай 3 n — триплоиды, 4 n — тетраплоидты, 5 n — пентаплоидты және т.б. болып  келеді. Полиплоидия организмнің  түрлі белгілерінің өзгеруіне себеп  болады. Сондықтан ол эволюция мен  селекция үшін аса маңызды болып  есептеледі. Мысалға, орыс селекционері В.С.Федоров шығарған қарабидайдың тетраплоидты формасын алайық. Қарабидайдың бұл түрі қалыпты диплоидты формасына  қарағанда сабағы мықты, дәндері  ірі, әрі салмақты болып өзгерген. Бұл әрине шаруашылық маңызы жағынан  тиімді өзгеріс.

Жалпы полиплоидияның нәтижесінде  өсімдіктердің жеке мүшелерінің  көлемі ұлғаяды. Ал оның негізінде клетка көлемінің ұлғаюы жатады, соған сәйкес оның құрамындағы белок, көмірсу, майлар, витаминдер және т.б. заттардың мөлшері  артады.

Полиплоидия — жануарларда өте сирек кезедсетін құбылыс. Бұл көбінесе жыныстық көбеюі партеногенез жолымен жүретін жәндіктерде кездеседі. Мысал ретінде аскариданы, жер құрттарын, көбелектерді алуға болады. Полиплоидияның жануарларда сирек кездесуінің бір себебі, олардың полиплоидия жағдайында ұрпақ бере алмайтындығына байланысты. Мысалы, тышқандарда триплоидты зиготаның болатындығы анықталған, бірақ олардың тіршілік қабілеті болмайды.

Анеуплоидия. Анеуплоидия немесе гетероплоидия хромосома санының гаплоидты жиынтыққа еселенбей өзгеруінің нәтижесінде пайда болады. Бұл құбылысты ең алғаш К. Бриджес дрозофила шыбынындағы жыныспен тіркесіп тұқым қуалау заңдылығын зерттеу барысында байқағандығын өткен тақырыптан білесіңдер. Ол аналық шыбынның дене клеткасынан ХХУ хромосомалардың (сонда У артық), ал аталықтарынан ХО (яғни У жоқ) хромосомаларды тапты. Осыған байланысты дрозофила шыбындарының кейбір белгілерінің (қанаты, көзі және т.б.) өзгеретіндігі анықталды. Мұндай жағдай өсімдіктер мен жануарларда және адамда да кездеседі. Мысалы, адамда 21-ші жұп хромосомада 46-ның орнына 47 хромосома болса Даун ауруы пайда болады. Ондай адамның ақылы кем, дене мүшелерінде түрлі кемістіктер болады.

Анеуплоидия құбылысының практикалық  маңызы да бар. Ол өсімдіктер селекциясында жекелеген хромосомаларды ауыстыру арқылы жаңа мол өнімді түрлерін алу үшін қолданылады.

Цитоплазмалық мутация. Бұл клетка цитоплазмасында кездесетін плазмогендердің өзгеруіне байланысты болады. Плазмогендер негізінен пластидтер мен митохондрияларда болады. Цитоплазмалық мутация да гендік және т.б. мутациялар сияқты ұрпақтан-ұрпаққа беріліп тұқым қуалайды. Мысалы, кейбір саңырауқұлақтарда тыныс алу кемістігі болатындығы анықталған. Зерттей келе, ондай кемістік олардың митохондрияларында болатын геннің мутацияға ұшырасуына байланысты екендігі белгілі болған. Осы сияқты пластидтер құрамында болатын геннің өзгеруіне байланысты хлорофилдік мутация пайда болады.

Тұқым қуалайтын өзгергіштіктегі ұқсас қатарлар заңы. Орыс генетигі Н.И.Вавилов тұқым қуалайтын өзгергіштікті зерттеу барысында систематикалық жағынан бір-біріне жақын тұрған түрлер мен туыстарда кездесетін мутациялардың ұқсас болып келетіндігін анықтады. Соның негізінде өзінің “Тұқым қуалайтын өзгергіштіктегі ұқсас қатарлар” деп аталатын заңын ашты. Бұл заң бойынша шығу тегі жағынан бір-біріне жақын, соған байланысты морфологиялық, физиологиялық және т.б. қасиеттері жағынан ұқсас организмдердің тұқым қуалайтын өзгергіштігі де ұқсас болып келеді. Мысалы, астық тұқымдасына жататын бидай, арпа, сұлы, жүгері, күріш, тары, бидайықтарда дәнінің түсі мен пішіні, өніп-өсуі, пісіп-жетілу мерзімі, суыққа төзімділігі және т.б. қасиеттері жөнінен тұқым қуалайтын өзгергіштіктің ұқсас қатарлары болатындығы анықталған (6-кесте). Сонда осы заңдылыққа сәйкес бір түрде болатын мутациялық өзгергіштікті білу арқылы соған жақын түрлер мен туыстарда ұқсас өзгергіштіктің болатындығы алдын ала болжанады.

Николай Иванович Вавилов

(1887–1943)

Ботаник, генетик, географ. Мәдени өсімдіктердің шығу орталықтарын анықтады. Тұқым қуалайтын өзгергіштіктегі ұқсас қатарлар заңын ашып, дүние жүзінің 40-қа жуық аймағында экспедициялық зерттеу-лер жүргізген

 

Тұқым қуалайтын өзгергіштіктің ұқсас қатарлары заңы селекцияда кеңінен қолданылады. Ол көптеген мутацияның ішінен қажеттілерін дұрыс таңдап алуға мүмкіндік туғызады және бір түрде болатын мутацияны білу арқылы оған туыстас екінші түрде де, дәл сондай мутация тудыруға болады. Мысалы, Н.И.Вавилов Абиссинаға барған сапарында қатты бидайдың қылтанақты түрлерін тапты. Кейіннен белгілі селекционер А.П.Шехурдин соған сәйкес жұмсақ бидайдың да қылтанақсыз сортын шығарды.

Тұқым қуалайтын өзгергіштіктің ұқсас қатарлары жануарларда да кездеседі. Мысалы, альбиностар (түстің ақ болуы) қояндарда, теңіз шошқасында және т.б. кеміргіштердің барлығында да кездеседі. Әр түрлі микроорганизмдерден де тұқым қуалайтын ұқсас биохимиялық өзгерістер байқалған.

Эволюциялық теория

Бұрынғы өткен тақырыптарда сендер тұқым қуалаушылық пен өзгергіштіктің заңдылықтарымен таныстыңдар. Енді олардың органикалық дүниенің эволюциялық  даму процесінде қандай рөл атқаратынын  қарастырамыз.

Систематиктердің есебі бойынша, қазіргі кезде жануарлардың 2 миллиондай, ал өсімдіктердің 500 мыңдай түрі белгілі. Осыншама алуан түрлердің пайда  болуы және сақталуы тұқым қуалаушылық  пен өзгергіштіктің заңдылықтарына байланысты екені сөзсіз. Организмнің  өзін қоршаған сыртқы ортаға бейімделуі барысында табиғи жолмен сұрыпталу  арқылы жаңа түрлердің пайда болатындығы  туралы тұңғыш рет ағылшын ғалымы Ч.Дарвин түсінік берді. Ол эволюцияның  қозғаушы күші болып табылатын үш факторды, атап айтқанда, тұқым қуалаушылықты, өзгергіштікті және сұрыптауды анықтады.

Түрдің пайда болуы барысында  жоғарыда аталған эволюциялық фактордың  тигізетін әсерлерін түсіну үшін, сол түрлердің шығуына және дамып-қалыптасуына негіз болып есептелетін популяцияның генетикалық заңдылықтарын білу қажет.

Популяциялар генетикасы. Популяция деп — тіршілік ортасы және оған бейімделу қабілеті де бірдей, бір-бірімен будандасып, ұрпақ бере алатын бір түрге жататын дарақтарды айтады. Қолдан сұрыптау арқылы алынатын жануарлардың тұқымдары мен өсімдіктердің сорттары да жеке популяцияларға жатады.

Популяцияның генетикалық құрылымын  ең алғаш статистикалық және генетикалық  әдістерді  қолдана отырып дат генетигі В.Иоганнсен зерттеді. Оның 1903 жылы “Популяциядағы және таза линиялардағы тұқым қуалау” деген еңбегі жарық көрді. Бұл ілімді орыс генетигі С.С.Четвериков әрі қарай жалғастырып, дамытты.

Иоганнсен популяцияның генетикалық  құрылымын зерттеу үшін объект ретінде  өздігінен тозаңданатын асбұршақты алды, сөйтіп, оның тұқымдарының салмағын өлшеп, ірілерін бір бөлек, ұсақтарын  бір бөлек іріктеді. Сонда олардың  салмағы 550—750 және 150—370 мг болып шыққан. Содан соң ол тұқымдарды бөлек-бөлек  еккен. Олардан өсіп шыққан өсімдіктердің  тұқымдарын жинап алып, қайта өлшегенде  ауыр салмақты (ірі) тұқымдардан өсіп шыққан өсімдіктердің дәндері орта есеппен 618,7 мг, ал жеңілдерінікі (ұсақ) 343,4 мг болған. Сонда, бұл тәжірибенің  нәтижесі асбұршақтың сорт популяциясы  генетикалық құрылымы жағынан әртекті  дарақтардан тұратындығын және оның әрқайсысы таза линиялардың бастамасы  бола алатындығын көрсетеді.

Сонымен, жоғарыда көрсетілгендей өздігінен  тозаңданатын өсімдіктер популяциясының генотиптері және солар арқылы анықталатын  белгілері көбінесе гомозиготалы (АА немесе аа) жағдайда болады. Сондықтан, олар таза линияларға жіктеле алады.

Ал жануарлар мен айқас тозаңданатын өсімдіктер популяциясының генотиптері  еркін будандасу негізінде қалыптасады. Осыған байланысты олар көпшілігінде гетерогенді (Аа) болып келеді. Мұндай популяцияның генетикалық құрылымын  зерттеудің бір жолы — жекелеген  гендер бойынша гомозиготалы және гетерезиготолы дарақтардың таралу сипатын анықтау.

Мысалы, популяциядағы бір геннің екі түрлі өлшемі бойынша гомозиготалы АА және аа дарақтары сан жағынан  бірдей дейік. Олардан А және а  гендері бар аталық және аналық гаметалар  тең мөлшерде түзіледі. Осындай гендері  бар дарақтар будандасқанда мынадай  нәтиже шығады:

Сонда F1-де доминантты гомозиготаның  пайда болу жиілігі 0,25-ке, гетерозиготалардікі  — 0,5-ке, рецессивті гомозиготалардікі  — 0,25-ке тең. Ал келесі буында гамета түзілгенде қайтадан доминантты (А) аллелі бар  гаметаның мөлшері 0,5-ке тең болады. Себебі 0,25-і гетерозиготадан (Аа) келеді, сол сияқты рецессивті (а) аллельді гаметаның мөлшері де 0,5-ке тең. Өйткені  онда да 0,25 гетерозиготадан беріледі. Сөйтіп, бұл мысалдан еркін будандасу  жағдайында әр буын сайын доминантты және рецессивті гендері бар гаметалардың мөлшері бір деңгейде, яғни 0,5 А  және 0,5 а болатынын көреміз.

Бірақ кейде популяциядағы гомозиготалар  санының тең болмайтындығы байқалады. Мысалы, қарабидайдың бір популяциясындағы сабағының түгі бар өсімдіктер, түгі жоқ өсімдіктерге қарағанда төрт есе көп болып келеді (4АА:1аа). Бұл жағдайда гаметалардың ара қатынасы 0,5 А:0,5 а емес, 0,8 А:0,2 а болады. Будандастыру нәтижесінде олардан мынандай үйлесім түзіледі:

Нәтижесінде әр жүз өсімдіктің орта есеппен 96-сы түкті (64 гомозигота, 32 гетерозигота), тек төртеуі ғана түксіз болып  шығады.

Бұл жағдайда келесі буындарда да “А” аллелі бар гаметалардың мөлшері 0,8 (0,64 гомозигота АА-дан, 0,16 гетерозигота Аа-дан), ал “а” аллелі бар гаметаның  мөлшері 0,2 (0,04 гомозигота аа-дан, 0,16 гетерозигота Аа-дан келеді) болады.

Харди—Вайнберг заңы. 1908 жылы ағылшын математигі Г.Харди мен неміс дәрігері В.Вайнберг популяциядағы генотип пен фенотиптің таралу жиілігін анықтайтын формула ұсынды. Ол кейіннен Харди—Вайнберг заңы деп аталды. Бұл формула бойынша гетерозиготалы организмдегі доминантты А аллелінің мөлшері Р деп, ал рецессивті а-ның мөлшері q деп белгіленеді. Осыдан келіп олардың ұрпақтарындағы ара қатынас мынандай болады:

Бұл алынғандарды жинақтағанда Харди—Вайнберг формуласы шығады:

Р2АА + 2РqАа + q2аа.

Енді осы келтірілген формуланы  қолдануға тоқталайық. Мысалы, ірі  қараның бір популяциясындағы мүйізділері 25% немесе 0,25, ал мүйізсіздер 75% немесе 0,75. Мүйізсіз белгіні доминантты А  — гені, мүйізді белгіні рецессивті а — гені анықтайды. Гепотип аа-ның  мөлшері бұл жағдайда 0,25 болғандықтан, жеке а аллелінің мөлшерін формулаға  сәйкес былай табамыз:

Доминантты аллель А-ның мөлшері  де осы формулаға сәйкес анықталады. p + q = 1-ге тең болғанда, Р = 1—q  болады. Сонда Р немесе А = 1 — а = 1 — 0,05 = 0,95. Осыдан келіп, популяциядағы доминантты гомозиготан, яғни генотип АА-ның мөлшері АА = p2 = 0,952 = 0,9025 шығады.

Енді рецессивті және доминантты генотиптердің  мөлшеріне қарай гетерозиготалардың мөлшерін анықтауға болады. Формула  бойынша ол:

Аа = 2pq = 2 ˙ 0,95 ˙ 0,05 = 0,095.

Сөйтіп, Харди—Вайнбергтің заңын  пайдалана отырып белгілі бір  фенотиптің мөлшерін есепке алудың негізінде  популяциядағы генотиптің таралу сипаты анықталады.

Бұл заңдылықтың практикалық маңызы зор. Мысалы, адам популяциясындағы кейбір тұқым қуалайтын аурулардың таралу сипатын анықтауға болады. Алайда бұл формуланы қолданудың да белгілі бір шегі бар. Олар мыналар: ең алдымен гендердің кездейсоқ үйлесімі болу үшін популяциялардың мөлшерінің көп болуы, жаңа мутациялардың пайда болмауы; өзгеше генотиптері бар, бөтен көршілес популяцияның дарақтары келіп қосылмауы керек.

Өсімдіктер мен жануарлардың табиғи популяцияларына жүргізілген генетикалық  зерттеулер олардың фенотип жағынан  біркелкі болғанымен, түрлі рецессивті мутацияларға бай келетінін көрсетті. Ондай мутациялар генотиптері гетерозиготалы болып тұрғанда фенотип тұрғысынан ешқандай да білінбейді. Тек будандасу  кезінде екі рецессивті аллель кезігіп, рецессивті гомозигота болғанда ғана білінеді. Мұндай жағдайда мутация  тікелей табиғи сұрыптаудың бақылауына өтеді. Сөйтіп, академик И.И.Шмальгаузеннің сөзімен айтатын болсақ, әрбір түр мен популяция өзінде “тұқым қуалайтын өзгергіштіктің қорын” жинақтаған күрделі гетерозиготалы жүйе болып есептеледі. Ол популяцияның тіршілік жағдайы өзгергенде ғана табиғи сұрыптау арқылы жүзеге асырылады. Әр популяцияның өзіне тән гендік қоры болады. Гендік қор (генофонд) дегеніміз — популяцияның, түрдің немесе систематикалық топтың гендерінің жиынтығы. Әр популяцияның өзінің табиғи сұрыптаудың бағытына сәйкес өзгеру мүмкіндігі болады.

Информация о работе Өсімдіктер экологиясы және өсімдіктердің алантүрліліг