Автор работы: Пользователь скрыл имя, 27 Марта 2013 в 10:36, реферат
Различают такие уровни организации живой материи - уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.
Между ненаследственной и
наследственной И. существует
тесная связь. Ненаследственных
(в буквальном смысле) признаков
и свойств нет, так как
Наследственную и
Независимой И. признаков
противопоставляют
Основные методы изучения
И. — сравнительно-
Наследственность и И. живых организмов иногда противопоставляют как «консервативное» и «прогрессивное» начала. В действительности же они теснейшим образом связаны. Отсутствие полной стабильности генотипа обусловливает мутационную и (в ходе дальнейших скрещиваний и расщеплений) комбинационную И., т. е. в целом — генотипическую И. Паратипическая (ненаследственная) И. — результат лишь относительной стабильности генотипа при определении им в онтогенезе нормы реакции при развитии признаков и свойств особей. Из этого следует возможность экспериментальных воздействий как на наследственную, так и на ненаследственную И. Первую можно усилить воздействием мутагенных факторов (излучения, температура, химические вещества). Размах и направление комбинационной И. можно контролировать с помощью искусственного отбора. На ненаследственную И. можно воздействовать, изменяя условия среды (питание, свет, влажность и т. д.), в которых протекает развитие организма.
Чёткое представление о
Изменчивость у микроорганизмов. У микроорганизмов, как и у других организмов, различают ненаследственную и наследственную И. Изменению могут подвергаться любые морфологические и физиологические признаки: величина и форма микроорганизмов, вид и окраска их колоний, способность усваивать или синтезировать различные органические вещества, болезнетворность и др. Наследственная И. микроорганизмов — результат мутаций, возникающих спонтанно или вызываемых физическими или химическими мутагенами (ультрафиолетовые лучи, ионизирующая радиация, этиленимин и др.). У мутантов могут резко усиливаться или снижаться такие количественные признаки, как способность к биосинтезу аминокислот, антибиотиков, ферментов, витаминов и т. п. Возникают так называемые дефицитные мутанты, способные расти только при добавлении к среде определённых аминокислот, пуринов, пиримидинов и др. Микроорганизмы размножаются очень быстро. Поэтому на них легче изучать все формы И., а также осуществлять искусственный отбор полезных мутантов (см. Селекция). Так, при непрерывном культивировании соответствующих микроорганизмов (проточные культуры) в питательной среде, содержащей, например, антибиотик, фенол или сулему, легко могут быть получены формы, устойчивые к данному веществу (адаптивная И.). Наблюдаются у микроорганизмов и взаимосвязанные изменения (коррелятивная И.). Так, возникновение у болезнетворных микробов складчатых колоний сопровождается снижением их иммуногенности. У микроорганизмов, имеющих истинный половой процесс (некоторые плесневые грибы, спорогенные дрожжи), возможно скрещивание, сопровождающееся перекомбинированием генов и получением гибридов. У несовершенных грибов и бактерий, лишённых истинного полового процесса, такие гибриды не могут быть получены.
98. Механизмы защиты генома от мутаций
Подавляющее большинство мутационных
изменений генома нежелательно и
сопровождается развитием различных
патологических состояний мутантной
особи или отдельной
Защита осуществляется на нескольких уровнях. Прежде всего, организм старается не допустить попадания химических мутагенов в жизненно важные локусы своего генома. Это достигается двумя путями. Во-первых, избыточные последовательности нуклеотидов ДНК, экранируя кодирующие последовательности нуклеотидов в геноме эукариот, принимают удар большей части химических мутагенов на себя. Те же цели могут быть достигнуты за счет особой пространственной организации ДНК в конкретных участках генома. Во-вторых, в клетках имеются многочисленные высоко- и низкомолекулярные ловушки мутагенов, важнейшими из которых являются: маннит, энкефалины, индолы, желчные кислоты и их производные, альфа-токоферол, аскорбиновая кислота, тирозин, серотонин, а также ряд других соединений экзогенного и эндогенного происхождения.
К сожалению, обе системы защиты не обладают 100%-й эффективностью. То же можно сказать и о точности функционирования ферментных систем, осуществляющих воспроизведение генетической информации. Поэтому нарушения первичной структуры ДНК неизбежны, но большинство первичных повреждений не превращается в мутации благодаря функционированию систем репарации ДНК .
99. Геномный импринтинг — эпигенетический процесс, при котором экспрессия определенных генов осуществляется в зависимости оттого, от какого родителя поступил аллель гена. Это ненаследуемый процесс, который не подчиняется наследованию по Менделю. Импринтинг генов вызывает экспрессию аллелей гена полученных от матери в случае генов H19 или CDKN1C и от отца в случае гена IGF2. Импринтинг некоторых генов в составе генома показан для насекомых, млекопитающих и цветковых растений.
Импринтинг генов
Однородительская дисомия, то есть наследование обеих копий целой хромосомы или ее части от одного родителя (при отсутствии соответствующего генетического материала от другого родителя), является исключением из менделевских принципов наследования. Она встречается редко и вызывает, например, синдром Прадера-Вилли и синдром Ангельмана .
Роль дисомии в патологии во многом усугубляется геномным импринтингом , который приводит к неодинаковой экспрессии материнской и отцовской копий гена.
Возможный механизм дисомии - элиминация лишней хромосомы у плода с трисомией на ранних стадиях эмбриогенеза. Болезнь проявляется в том случае, если элиминируется лишняя хромосома, происходящая из нормальной гаметы.
Однородительская дисомия была
описана при муковисцидозе , когда
оба мутантных аллеля наследовались
от одного родителя. В таких случаях
дисомия имитирует аутосомно-
У 20-30% больных с синдромом Прадера-
Предполагают, что однородительская дисомия является причиной внутриутробной задержки развития , умственной отсталости и микроцефалии . Эти предположения пока не подтверждены молекулярно-биологическими исследованиями.
100. ЭКСПАНСИЯ ТРИНУКЛЕОТИДНЫХ ФРАГМЕНТОВ - патологическое состояние: вариант генетической мутации, характеризующийся появлением в ДНК "бессмысленных" повторов тринуклеотидов, которые могут приводить к дезорганизации функционирования ДНК или синтезу патологического белка, накапливающегося в клетках, что приводит к гибели клетки. Лежит в основе ряда заболеваний (болезни Гентингтона, болезни Кеннеди, спиноцеребеллярных дегенерации и т.д.), тяжесть которых зависит от числа повторов тринуклеотидов. Общая особенность этой группы заболеваний - более раннее начало и нарастание тяжести их клинических проявлений из поколения в поколение, что обычно отражает увеличение числа тринуклеотидных повторов (феномен антиципации).
В последнее время выделяется еще один тип наследования - митохондриальный. Митохондрии передаются с цитоплазмой яйцеклеток. Спермии не имеют митохондрий, поскольку цитоплазма элиминируется в процессе созревания мужских половых клеток. В яйцеклетке содержится около 25000 митохондрий. Каждая митохондрия содержит кольцевую хромосому. Генные мутации в митохондриальной ДНК обнаружены при атрофии зрительного нерва Лебераф, митохондриальных миопатиях, прогрессирующих офтальмоплегиях. Болезни, обусловленные данным типом наследственности, передаются от матери и дочерям, и сыновьям в равной степени. Больные отцы болезнь не передают ни дочерям, ни сыновьям.
103. Биологи́ческие ри́тмы — (биоритмы, Б.р.) периодически повторяющиеся изменения характера и интенсивности биологических процессов и явлений. Они свойственны живой материи на всех уровнях ее организации — от молекулярных и субклеточных до биосферы. Являются фундаментальным процессом в живой природе. Одни биологические ритмы относительно самостоятельны (например, частота сокращений сердца, дыхания), другие связаны с приспособлением организмов к геофизическим циклам - суточным (например, колебания интенсивности деления клеток, обмена веществ, двигательной активности животных), приливным (например, открывание и закрывание раковин у морских моллюсков, связанные с уровнем морских приливов), годичным (изменение численности и активности животных, роста и развития растений и др.)