Шпаргалка по "Биологии"

Автор работы: Пользователь скрыл имя, 09 Октября 2014 в 19:41, шпаргалка

Краткое описание

В работе даны ответы на вопросы для подготовки к экзамену по дисциплине "Биология"

Прикрепленные файлы: 1 файл

biologia_2_zachet_1.docx

— 94.70 Кб (Скачать документ)

Аллельное исключение – вид взаимодействия аллельных генов, когда один из аллельных генов (субгенов или целая хромосома) из пары не работает – продукт гена не образуется (например, выключение субгена при синтезе антител или гетерохроматинизация одной из Х-хромосом у женщин).

Виды взаимодействия неаллельных генов: модифицирующее влияние, комплементарность, эпистаз, эффект положения гена.

Модифицирующее влияние – это вид взаимодействия неаллельных генов, когда продукт одной пары генов модифицирует (изменяет) фенотипический эффект другой пары генов. Гены-модификаторы влияют на пенетрантность или экспрессивность другого гена. Ген-модификатор в системе групп крови АВО(Н): наличие А, В или Н-антигенов в слюне (и других секретах) зависит от секреторного гена Se (расположен в 19 хро-ме). Секреторы: SeSe, Sese. Несекреторы: sese. Например: АВSeSe, ABSese – в слюне обнаруживаются антигены А и В. АВsese – в слюне не обнаруживаются антигены А и В. ООSese – в слюне обнаруживается антиген Н.

Комплементарность - вид взаимодействия неаллельных доминантных генов, в результате которого формируется новый конечный признак.

А и В –комплементарные гены, обусловливают развитие нормального слуха.

Р АаВв х АаВв

норм.сл норм.сл

F АВ Ав аВ  ав

9 : 3 : 3 : 1

норм.сл. г л у х о н е м о т а

Эпистаз – это вид взаимодействия неаллельных генов, когда аллель из одной пары генов подавляет (усиливает) фенотипический эффект другой пары генов. При доминантном эпистазе, когда доминантный аллель одного гена (А) препятствует проявлению другого гена (В или b), расщепление в потомстве зависит от их фенотипического значения и может выражаться соотношением 12:3:1 или 13:3. При рецессивном эпистазе ген, определяющий какой-то признак (В), не проявляется у гомозигот по рецессивному аллелю другого гена (аа). Расщепление в потомстве двух дигетерозигот по таким генам будет соответствовать соотношение 9:3:4.

Эффект положения гена - фенотипический эффект гена зависит от соседних генов. Если ген в результате перекомбинации генов окажется в зоне гетерохроматина, его активность будет снижена.

 

 

Общая характеристика взаимодействия: а) аллельных генов, б) неаллельных генов.

 

15. Закономерности  сцепленного наследования признаков. Группы сцепления. (Цис- и транс-фазы сцепления генов. Полное и неполное сцепление. Кроссинговер, его       генетический эффект. Синтенные гены. Выявление сцепления по результатам анализирующего скрещивания. Применение результатов по тесному сцеплению генов для целей медико-генетического консультирования. Генетические карты хромосом человека.)

 

При сцепленном наследовании неаллельные гены расположены в одной паре гомологичных хромосом. Каждая хромосома представляет собой группу сцепления генов. Число групп сцепления у диплоидного организма равно гаплоидному набору хромосом (у женщин – 23 Г.С., у мужчин – 24).

Фазы сцепления генов:

Цис-фаза А В Гаметы: АВ и ав а в 50% 50%

Если гены находятся в цис-фазе (оба доминантных гена локализованы в одной хромосоме, а их рецессивные аллели – в другой): гаметы АВ и аb (по 50%), генотип потомства АаВb и ааbb (по 50%).

Транс-фаза А в Гаметы: Ав и аВ

а В 50% 50%

Если гены находятся в транс-фазе (один доминантный ген локализован в одной хромосоме, а другой в гомологичной ей): типы гамет – Аb и аВ (по 50%), генотип потомства Ааbb, aaBb (по 50%).

Полное сцепление – кроссинговер не происходит. Сцепленные гены всегда наследуются вместе. Примеры: гены рРНК от 40 до 50 копий в каждой ядрышкообразующей хромосоме.

Неполное сцепление – кроссинговер происходит, частота кроссинговера зависит от расстояния между сцепленными генами: тесное сцепление – кроссинговер происходит редко, гены чаще наследуются вместе, примеры: гены Rh-комплекса (СДЕ) в 1 хромосоме, гены HLA-комплекса (АВСД) в 6 хромосоме; синтенное сцепление – кроссинговер происходит часто между генами, далеко расположенными друг от друга в большой хромосоме (синтенные гены), синтенные гены наследуются практически независимо.

Причина нарушения сцепления – кроссинговер – обмен гомологичных хромосом гомологичными районами, происходит в профазе I мейоза. Частота нарушения сцепления постоянна для каждой пары сцепленных генов. Кроссинговер у женщин происходит чаще, чем у мужчин. Биологическое значение кроссинговера – увеличивает комбинативную изменчивость. При неполном сцеплении у дигетерозиготы образуется 4 типа гамет и 4 фенотипических класса в потомстве в неравных количественных отношениях (причем кроссоверных особей-рекомбинант всегда меньше). Гаметы: АВ и ав – некроссоверные, их образуется больше, Ав и аВ – кроссоверные, их образуется меньше. При слиянии кроссоверных гамет образуются рекомбинанты (особи, у которых генетическая информация перекомбинирована). Процентное соотношение особей, образующихся при слиянии кроссоверных гамет, зависит от расстояния между генами. Сила сцепления между генами обратно пропорциональна расстоянию между ними. За единицу расстояния между генами принята условная единица – морганида. 1 морганида соответствует расстоянию в хромосоме, на котором кроссинговер происходит в 1% гамет. При расстоянии между генами в 50 и более морганид признаки наследуются независимо. Кроссинговер может быть одиночным, двойным (множественным). Частота кроссинговера используется для картирования хромосом (определения порядка расположения генов в хромосоме и относительного расстояния между ними).

Сцепленное наследование отличается от независимого количественным соотношением гамет у потомков, что выявляется при анализирующем дигибридном скрещивании.

Эффект положения генов – изменение фенотипического эффекта генов при их тесном сцеплении. Rh-комплекс (СDЕ, сdе) – выявляются антигены: С, D, Е, с, d, е. Антиген-D самый сильный, он определяет положительный резус. Все остальные – отрицательный.

Генотипы:

CDe - гены С и D сцеплены в цис-фазе, при этом активность гена D снижена  геном С

cde и кровь дает слабо положительную  реакцию, т.к. мало D-антигена.

Cde - гены С и D сцеплены в транс- фазе. Ген С не оказывает влияния  на активность

cDe гена D и кровь дает нормальную  положительную реакцию

Генетическая карта хромосомы – схема взаимного расположения генов, находящихся в одной группе сцепления. Расстояние между генами на генетической карте хромосомы определяют по частоте кроссинговера между ними.

 

 

16. Полигенное  наследование. Особенности прогнозирования  МФБ. Понятие о маркерных признаках, HLA – зависимые болезни.

Полигенный тип наследования – наследование не по законам Менделя. По полигенному типу наследования наследуются полигенные (неменделирующие) признаки. Полигенные признаки – это в основном количественные непрерывные признаки (границы между фенотипическими классами нечеткие), в популяциях (семьях) – множество фенотипических классов, в формирование п.п. принимает участие много генов (полигены), эффекты генов суммируются, среда всегда модифицирует эффект генов, каждая пара генов наследуется по законам Менделя, конечный признак – не по законам Менделя. Примеры нормальных полигенных признаков: рост, масса тела, степень пигментации, степень интеллекта, продолжительность жизни, фертильность, близнецовость, дерматоглифический рисунок и др. Примеры патологических полигенных признаков: предрасположенность (подверженность) к МФБ, мультифакториальные формы врожденных пороков развития (ВПР).

Модели полигенного наследования: 1) аддитивная полигения без порога действия, каждый ген из серии полигенов вносит свою долю в формирование признака (болезни), так наследуются: рост, масса тела, интенсивность пигментации кожи, интеллект, продолжительность жизни; 2) Аддитивная полигения с порогом действия, признак (болезнь) проявляется в том случае, если в генотипе окажется пороговая величина генов, так наследуются: гипертоническая болезнь, нормальное развитие верхней губы.

МФБ – болезни, в основе этиопатогенеза которых лежит взаимодействие полигеннообусловленной предрасположенности и многих факторов среды. Распространенность в популяциях МФБ высокая (шизофрения – 1%, сахарный диабет – 3–5%, ИБС (ишемическая болезнь сердца) – 10%). Большинство МФБ не врожденные (исключение ВПР). Особенность клиники МФБ: хроническое течение с ремиссиями, нередко обострение в определенный сезон, многие МФБ зависят от пола, характерен клинический полиморфизм. Особенности родословных: не похожи ни на одну из схем при моногенных болезнях, в нисходящих поколениях наблюдается «омоложение» болезни. Многие МФБ ассоциируют с рядом моногенных признаков (маркерами). Например, генетическими маркерами ИНЗСД является АГ НLА, ДR3/ДR4, группа крови М, гаптоглобин – I. МФБ не наследуются, наследуется лишь предрасположенность к ним по ПТН.

Маркерные признаки при МФБ (факторы риска) – это моногенные признаки, формирование которых не зависит от факторов среды и нередко нередко ассоциирующих с определенными МФБ.

Особенности диагностики МФБ: многие МФБ имеют моногенные формы, а также фенокопии, основные симптомы ряда МФБ входят в симптомокомплекс некоторых генных или хромосомных болезней; например, 25% ВПР – это генные болезни, 20% – хромосомные, 50% – МФБ, 10% – фенокопии. Диагностика МФБ включает кроме обычных клинических (параклинических) методов и генетические методы: клинико-генеалогический, выявление маркеров, исследование кариотипа (для дифференциальной диагностики с хромосомной болезнью).

Особенности пригнозирования МФБ – риск при МФБ зависит: от степени родства – доли общих генов пробанда с больным родственником (чем ближе степень родства, тем выше риск); от количества больных родственников (чем больше, тем выше риск); от тяжести болезни родственников (чем тяжелее, тем выше риск); чем больше маркерных признаков у пробанда, тем выше риск; риск выше, если больной родитель – редко поражаемый пол. Расчет риска эмпирический или по готовым цифрам (таблицам), или корень квадратный из популяционной частоты.

HLA-зависимые болезни – МФЗ, которые нередко ассоциируют с определенными генами генного комплекса HLA. Выявлена четкая зависимость частоты заболевания некоторыми МФЗ от наличия в генотипе людей определенных генов лейкоцитарных антигенов (продуктов генов HLA), к ним относятся псориаз, инсулинозависимый сахарный диабет.

 

 

 

Изменчивость

17. Классификация  форм изменчивости. Фенотипическая  изменчивость. Понятие о  норме реакции.

  Изменчивостью называют способность живых организмов приобретать новые признаки и свойства. Благодаря изменчивости, организмы могут приспосабливаться к изменяющимся условиям среды обитания. Существуют 2 основные формы изменчивости: фенотипическая (ненаследственная) и генотипическая (наследственная). В свою очередь фенотипическая изменчивость подразделяется на модификации, фенокопии и морфозы. Генотипичекая изменчивость может быть каноническая (комбинативная и мутационная) и неканоническая. В результате ненаследственной, или фенотипической, — изменчивости не происходит  изменения генотипа. Модификации – изменения фенотипа в пределах нормы реакции, возникающие под влиянием обычных факторов среды.

Фенокопии – изменения фенотипа (похожие на мутации) под влиянием неблагоприятных факторов среды. В медицине   - это ненаследственные болезни, сходные с наследственными. Наиболее частая причина

Ф действие на беременных тератогенов различной природы, нарушающих эмбриональное развитие плода (генотип его при этом не затрагивается).

Морфозы – ненаследственные изменения фенотипа организма в онтогенезе под влиянием  экстремальных факторов среды. Имеют неадаптивный и необратимый характер. Часто – это грубые изменения фенотипа, выходящие за пределы нормы реакции, в итоге развивается болезнь и может наблюдаться гибель организма. Чем шире НР признака, тем больше у организма возможностей  для приспособления к условиям меняющейся среды обитания.

Норма реакции

Любой признак изменяется в определенных пределах называемых нормой реакции, характерной для определённого вида. Узкая норма р-ции (качественные изменения): кариотип и рНкрови. Широкая норма р-ции (количественные признаки): рост, масса тела, кол-во эритроцитов, глюкозы в крови, частота пульса, конц-ция ионов натрия и калия в кл.

18. Комбинативная изменчивость, ее  механизмы, значение в возникновении  генотипического разнообразия человечества.

комбинативной — возникающей в результате перекомбинации хромосом в процессе полового размножения и участков хромосом в процессе кроссинговера; основные механизмы комбинативной изменчивости: постоянные и непостоянные.

Постоянные:

1)случайное и независимое расхождение  родительских гомологичных хромосом  в анафазе 1 мейоза;

2) случайный характер подбора  супружеских пар;

3)случайный характер слияния  гамет при оплодотворении.

Непостоянные:

  1. Возможность  кроссинговера в профазе 1 мейоза;
  2. Перемещение мигрирующих генетических элементов (МГЭ);
  3. Исключение из репликации  участка гена  одной из цепей ДНК.

19. Классификация мутаций. Их характеристика.

18. Комбинативная  изменчивость, ее механизмы, значение  в возникновении генотипического  разнообразия человечества.

Генотипическая изменчивость – изменения, затрагивающие ДНК ядра или ДНК митохондрий.

Комбинативная изменчивость – новые сочетания неизмененных генов родителей в генотипах потомства.

Механизмы комбинативной изменчивости:

  • Постоянные: случайное и независимое расхождение хромосом в анафазе 1 мейоза 1; случайная встреча гамет при оплодотворении; случайный подбор родительских пар
  • Непостоянные: кроссинговер, поведение МГЭ (мобильных генетических элементов)

Значение комбинативной изменчивости:

  1. Возникает огромное гено- и фенотипическое разнообразие особей.
  2. Повышаются адаптивные возможности.
  3. Может возникнуть комбинация генов, которая проявится в фенотипе как болезнь, или исключит ее проявление.

Информация о работе Шпаргалка по "Биологии"