Радионуклиды: источники и пути поступления в организм

Автор работы: Пользователь скрыл имя, 18 Мая 2015 в 13:37, реферат

Краткое описание

Среди вопросов, представляющих научный интерес, немногие приковывают к себе столь постоянное внимание общественности и вызывают так много споров, как вопрос о действии радиации на человека и окружающую среду. В промышленно развитых странах не проходит и недели без какой-нибудь демонстрации общественности по этому поводу. Такая же ситуация довольно скоро может возникнуть и в развивающихся странах, которые создают свою атомную энергетику; есть все основания утверждать, что дебаты по поводу радиации и ее воздействия вряд ли утихнут в ближайшем будущем.

Прикрепленные файлы: 1 файл

radionuklidy.docx

— 56.17 Кб (Скачать документ)

Что касается доз, полученных населением, то наиболее значимыми выпавшими радионуклидами были йод-131, цезий-134 и цезий-137. Почти вся доза получена от внешнего облучения и от радионуклидов, поступивших с пищей.

Авария 1957 года на ПО”Маяк”в Челябинской области. До настоящего времени территория радиоактивного следа характеризуется повышенным гамма-фоном и содержанием радионуклидов в почве, воде, растениях. Территория следа сейчас сузилась, так как прошел период полураспада доминирующего изотопа стронция-90, и его там осталось в 2 раза меньше. Однако жить на этой территории, вести подсобное хозяйство. собирать грибы и ягоды нельзя.

К сожалению, порой встречаются случаи, когда жители прилегающих к периметру следа сел пасут на этой территории скот, заготавливают корма. Потом с молоком и мясом они потребляют повышенные дозы радионуклидов.

Выбросы радионуклидов в окружающую средупроисходят от многих источников, включая ядерный топливный цикл, объекты оборонной промышленности, научно-исследовательские организации, больницы, неядерную промышленность.

Все промышленные отбросы должны быть нормированы, при значительных выбросах необходим постоянный контроль как самих выбросов, так и окружающей среды. Эти программы постоянного контроля осуществляются оператором ведомственной дозиметрической службы и правительственными ведомствами, которые дают разрешение на выброс.

Ядерная энергетика.

Именно она ответственна за большую часть искусственно полученных радионуклидов, которые выбрасываются в окружающую среду. Различные виды радионуклидов выбрасываются в жидкой форме или в виде твердых частиц, а также в газообразной форме на каждой стадии топливного цикла, причем природа выброса зависит от специфических операций в каждом процессе.

Заводы по производству топлива и обогащению выделяют главным образом изотопы урана и тория, что приводит к получению годовой коллективной дозы менее чем 0,1 чел-Зв от всех воздействий этих радионуклидов. В ядерной энергетике выбросы в атмосферу приводят к получению годовой коллективной дозы 5 чел-Зв преимущественно от перехода трития, углерода-14 и серы-35 в пищевые продукты. Годовая коллективная доза от жидких отходов от АЭС гораздо меньше; предполагают, что она меньше, чем 0,3 чел-Зв. Эта доза создается главным образом при употреблении в пищу радионуклидов, содержащихся в рыбе, крабах или моллюсках.

При переработке отработавшего ядерного топлива образуются выбросы, наиболее значимые в радиационном отношении, общая годовая коллективная доза составляет не более 20 чел-Зв. В процессе вторичной переработки образуются жидкие отходы.

Выбросы в воздух от других установок ядерной энергетики добавляют в годовую коллективную дозу еще 5 чел-Зв. При этом общая доза для населения от воздействий выбросов и жидких отходов в ядерной энергетике составляет 30 чел-Зв (табл.1).

Таблица 1. Годовые дозы от радионуклидов, выбрасываемых в окружающую среду.

Источник

Годовая коллективная эффективная доза

Ядерная промышленность

30

Сжигание угля

10


 

Сжигание угля. Выбросы радионуклидов в окружающую среду происходят и при некоторых процессах в неядерной промышленности. В результате в большей части этих выбросов наблюдаются незначительные индивидуальные дозы, которые вносят небольшой вклад в коллективную дозу. Однако одна отрасль промышленности заслуживает внимания в этом отношении - это получение электричества на электростанциях, работающих на каменном угле. Облучение происходит как при вдыхании в воздух, так и при переносе этих радионуклидов по пищевым цепочкам. Максимальная индивидуальная доза очень мала (меньше, чем 1 мкЗв). Годовая коллективная доза для населения Великобритании, получаемая от электростанций, работающих на каменном угле, составляет около 5 чел-Зв, а при сжигании каменного угля для домашних целей дополнительно 5 чел-Зв.

Уголь, подобно большинству других природных материалов, содержит ничтожные количества первичных радионуклидов. Последние, извлеченные вместе с углем из недр земли, после сжигания угля попадают в окружающую среду, где могут служить источником облучения людей.

На приготовление пищи, и отопление домов расходуется не очень много угля, но зато много зольной пыли летит в воздух в пересчете на единицу топлива. Таким образом, из печек и каминов всего мира вылетает в атмосферу зольной пыли, возможно, не меньше, чем из труб электростанций. Кроме того, в отличие от большинства электростанций жилые дома имеют относительно невысокие трубы и расположены обычно в центре населенных пунктов, поэтому гораздо большая часть загрязнений попадает непосредственно на людей. До последнего времени на это обстоятельство почти не обращали внимания, но по весьма предварительной оценке из-за сжигания угля в домашних условиях для приготовления пищи и обогревания жилищ во всем мире в 1979 г. ожидаемая доза облучения населения Земли возросла на 100.000 чел-Зв.

Добыча фосфатов ведется во многих местах Земного шара, они используются главным образом для производства удобрений, которых в 1977 г. во всем мире было получено около 30 млн. тонн. Большинство разрабатываемых фосфатных месторождений содержит уран, присутствующий там в довольно высокой концентрации. В процессе добычи и переработки руды выделяется радон, да и сами удобрения радиоактивны, и содержащиеся в них радиоизотопы проникают из почвы в пищевые культуры. Радиационное загрязнение в этом случае бывает обыкновенно незначительным, но повышается, если удобрения вносят в землю в жидком виде или если содержащие фосфаты вещества скармливают скоту. Такие вещества широко используются в качестве кормовых добавок, что может привести к значительному увеличению содержания радиоактивности в молоке. Все эти аспекты применения фосфатов дают за год ожидаемую коллективную эффективную эквивалентную дозу, равную примерно 6000 чел-Зв.

Медицинские приборы. Радионуклиды поступают в организм человека при флюорографии, рентгенографии зуба, рентгеноскопии легких, радио-изотопных обследованиях, лучевой терапии.

Другие источники радиации - полеты в самолете, телевизор, компьютер, гранитные сооружения.

 

 

 

  1. ДЕЙСТВИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОРГАНИЗМ ЧЕЛОВЕКА

Дозы радиационного облучения

Разные виды излучений сопровождаются высвобождением разного количества энергии и обладают разной проникающей способностью, поэтому они оказывают неодинаковое воздействие на ткани живого организма.

Альфа-излучение, которое представляет собой поток тяжелых частиц, состоящих из протонов и нейтронов, задерживается, например, листом бумаги и практически не способно проникнуть через наружный слой кожи, образованный отмершими клетками. Поэтому оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие альфа-частицы, не попадут внутрь организма через открытую рану, с пищей или с вдыхаемым воздухом; тогда они становятся чрезвычайно опасными.

Бета-излучение обладает большей проникающей способностью: оно проходит в ткани организма на глубину один-два сантиметра. Проникающая способность гамма-излучения, которое распространяется со скоростью света, очень велика: его может задержать лишь толстая свинцовая или бетонная плита.

Повреждений, вызванных в живом организме излучением, будет тем больше, чем больше энергии оно передаст тканям; количество такой переданной организму энергии называется дозой (этот термин первоначально относился к дозе лекарственного препарата, то есть дозе, идущей на пользу, а не во вред организму). Дозу излучения организм может получить от любого радионуклида или их смеси независимо от того, находятся ли они вне организма или внутри него (в результате попадания с пищей, водой или воздухом).

Дозы можно рассчитывать по-разному. с учетом того, каков размер облученного участка и где он расположен, один ли человек подвергся облучению или группа людей и в течение какого времени это происходило.

Рис.2 Дозы радиационного облучения

Поглощенная доза - энергия ионизирующего излучения, поглощенная облучаемым телом (тканями организма), в пересчете на единицу массы.

Измеряется в системе СИ в греях, 1Гр = 1Дж/кг

Эквивалентная доза - поглощенная доза, умноженная на коэффициент, отражающий способность данного вида излучения повреждать ткани организма

Эффективная эквивалентная доза - эквивалентная доза, умноженная на коэффициент, учитывающий разную чувствительность различных тканей к облучению.

Коллективная эффективная эквивалентная доза - эффективная эквивалентная доза, полученная группой людей от какого-либо источника радиации.

Полная коллективная эффективная эквивалентная доза - коллективная эффективная эквивалентная доза, которую получат поколения людей от какого-либо источника за все время его дальнейшего существования.


 

Количество энергии излучения, поглощенное единицей массы облучаемого тела (тканями организма), называется поглощенной дозой (рис.3) и измеряется в системе СИ в греях (Гр). 1Гр = 1Дж/кг. Но эта величина не учитывает того, что при одинаковой поглощенной дозе альфа-излучение гораздо опаснее бета - или гамма-излучений (в 20 раз !).

Пересчитанная с учетом коэффициента, учитывающего неодинаковую радиационную опасность для организма разных видов ионизирующего излучения, называется эквивалентной дозой. Измеряется в системе СИ в зивертах. 1Зв соответствует поглощенной дозе в 1 Дж/кг для рентгеновского, гамма- и бета-излучений.

Следует учитывать также, что одни части тела (органы, ткани) более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений.

Поэтому дозы облучения органов и тканей также следует учитывать с разными коэффициентами. Умножив эквивалентные дозы на соответствующие коэффициенты и просуммировав по всем органам и тканям, получим эффективную эквивалентную дозу, отражающую суммарный эффект облучения для организма; она также измеряется в зивертах.

Перечисленные выше три данных понятия описывают только индивидуально получаемые дозы. Просуммировав индивидуальные эффективные эквивалентные дозы, полученные группой людей, мы придем к коллективной эффективной эквивалентной дозе, которая измеряется в человеко-зивертах (чел.-Зв).

Поскольку многие радионуклиды распадаются очень медленно и останутся радиоактивными и в отдаленном будущем, следует ввести еще одно определение. Коллективную эффективную эквивалентную дозу, которую получат многие поколения людей от какого-либо радиоактивного источника за все время его дальнейшего существования, называют ожидаемой (полной) коллективной эффективной эквивалентной дозой.

 Биологическое  действие радиации на организм  человека

За всю свою жизнь человек получает дозу облучения от естественных источников, и при нормальном состоянии среды обитания такое облучение не вызывает каких-либо изменений в органах и тканях человека.

Но по самой своей природе радиация вредна для жизни. Малые дозы могут “запустить” не до конца еще установленную цепь событий, приводящую к раку или к генетическим повреждениям. При больших дозах радиация может разрушать клетки, повреждать ткани органов и явиться причиной скорой гибели организма.

Повреждения, вызываемые большими дозами облучения, обыкновенно проявляются в течение нескольких часов или дней. Раковые заболевания, однако, проявляются спустя много лет после облучения - как правило, не ранее чем через одно-два десятилетия. А врожденные пороки развития и другие наследственные болезни, вызываемые повреждением генетического аппарата, по определению проявляются лишь в следующем или последующих поколениях: это дети, внуки и более отдаленные потомки индивидуума, подвергшегося облучению.

В то время как идентификация быстро проявляющихся (“острых”) последствий от действия больших доз облучения не составляет труда, обнаружить отдаленные последствия от малых доз облучения почти всегда оказывается очень трудно. Частично это объясняется тем, что для их проявления должно пройти очень много времени. Но даже и обнаружив какие-то эффекты. требуется еще доказать, что они объясняются действием радиации, поскольку и рак, и повреждения генетического аппарата могут быть вызваны не только радиацией, но и множеством других причин.

Чтобы вызвать острое поражение организма, дозы облучения должны превышать определенный уровень, но нет никаких оснований считать, что это правило действует в случае таких последствий, как рак или повреждение генетического аппарата. По крайней мере, теоретически для этого достаточно самой малой дозы. Однако в то же самое время никакая доза облучения не приводит к этим последствиям во всех случаях. Даже при относительно больших дозах облучения далеко не все люди обречены на эти болезни: действующие в организме человека репарационные механизмы обычно ликвидируют все повреждения. Точно так же любой человек, подвергшийся действию радиации, совсем не обязательно должен заболеть раком или стать носителем наследственных болезней; однако вероятность, или риск, наступления таких последствий у него больше, чем у человека, который не был облучен. И риск этот тем больше, чем больше доза облучения.

НКДАР ООН пытается установить со всей возможной достоверностью, какому дополнительному риску подвергаются люди при различных дозах облучения. Вероятно, в области изучения действия радиации на человека и окружающую среду было проведено больше исследований, чем при изучении любого другого источника повышенной опасности. Однако чем отдаленнее эффект и меньше доза, тем меньше полезных сведений, которыми мы располагаем на сегодняшний день.

Острое поражение организма происходит при больших дозах облучения. Радиация оказывает подобное действие, лишь начиная с некоторой минимальной, или “пороговой”, дозы облучения.

Большое количество сведений было получено при анализе результатов применения лучевой терапии для лечения рака. Многолетний опыт позволил медикам получить обширную информацию о реакции тканей человека на облучение. Эта реакция для разных органов и тканей оказалась неодинаковой, причем различия очень велики. Величина же дозы, определяющая тяжесть поражения организма, зависит от того, получает ли ее организм сразу или в несколько приемов. большинство органов успевает в той или иной степени залечить радиационные повреждения и поэтому лучше переносит серию мелких доз, нежели ту же суммарную дозу облучения, полученную за один прием.

Информация о работе Радионуклиды: источники и пути поступления в организм