Автор работы: Пользователь скрыл имя, 26 Апреля 2013 в 19:15, лекция
Белки – неразветвляющиеся полимеры, минимальная структурная единица которых – аминокислота (АК).
Аминокислоты соединены между собой пептидной связью. В состав белков входит 20 АК в альфа-форме, расположенных в различной, но строго определенной для каждого белка последовательности.
Белки организма включают около 16% азота, который в ряде методов является маркером вещества белкового происхождения.
Сведения о суммарном количестве белков плазмы (общий белок крови) получают обычно рефрактометрическим и фотометрическим биуретовыми методами.
Плазма крови человека в норме содержит более 100 видов белков.
- -
Лекция № 16
Патология белкового обмена
Белки – неразветвляющиеся полимеры, минимальная структурная единица которых – аминокислота (АК).
Аминокислоты соединены между собой пептидной связью. В состав белков входит 20 АК в альфа-форме, расположенных в различной, но строго определенной для каждого белка последовательности.
Белки организма включают около 16% азота, который в ряде методов является маркером вещества белкового происхождения.
Сведения о суммарном количестве белков плазмы (общий белок крови) получают обычно рефрактометрическим и фотометрическим биуретовыми методами.
Плазма крови человека в норме содержит более 100 видов белков.
Около 20% общего белка составляют альбумины, иммуноглобулины, липопротеиды, фибриноген, трансферрин и др.
Нормальные величины общего белка плазмы: 65-85 г/л.
За счет наличия в молекуле АК одновременно аминной и карбоксильной групп этим соединениям присущи кислотно-основные свойства. В нейтральной среде АК существуют в виде биполярных ионов - цвиттер-ионов т.е. не NH2– –COOH , а NH3+–R-COO – .
Если карбоксильная группа одной АК ацилирует аминогруппу другой АК, то образуется ковалентная амидная связь, которую называют пептидной. Т.о. пептиды – это соединения, образованные из остатков альфа-АК, соединенных между собой пептидной связью.
Рис. 16.1. Образование полипептида
из аминокислот с помощью ковалент
Данная связь достаточно стабильна и разрыв ее происходит лишь при участии катализаторов – специфических ферментов. Посредством такой связи АК объединяются в достаточно длинные цепочки, которые носят название полипептидных. Каждая такая цепь содержит на одном конце АК со свободной аминогруппой – это N-концевой остаток, и на другом с карбоксильной группой – С-концевой остаток.
Полипептиды, способные самопроизвольно формировать и удерживать определенную пространственную структуру, которая называется конформацией, относят к белкам.
Стабилизация такой структуры возможна лишь при достижении полипептидами определенной длины, поэтому белками обычно считают полипептиды молекулярной массой более 5 000 Да. (1 Да равен 1/12 изотопа углерода). Только имея определенное пространственное строение, белок может функционировать.
В современной литературе принято рассматривать 4 уровня организации структуры молекулы белка.
Последовательность
А |
Б |
Рис. 16.2. Первичная (А) и вторичная (В) структура белковой молекулы [http://him.1september.ru/ 2004/06/12.htm].
Вторичной структурой называют пространственное расположение атомов главной цепи молекулы белка. Существует три типа вторичной структуры: альфа-спираль, бета-складчатость и бета-изгиб. Образуется и удерживается в пространстве за счет образования водородных связей между боковыми группировками АК основной цепи. Водородные связи образуются между электроотрицательными атомами кислорода карбонильных групп и атомами водорода двух аминокислот.
Альфа-спираль – это пептидная цепь штопорообразно закрученная вокруг воображаемого цилиндра. Диаметр такой спирали 0,5 А. В природных белках обнаружена только правая спираль. Некоторые белки (инсулин) имеют две параллельные спирали. Бета-складчатость – полипептидная цепь собрана в равнозначные складки. Бета-изгиб – образуется между тремя аминокислотами за счет водородной связи. Он необходим для изменения пространственного расположения полипептидной цепи при образовании третичной структуры белка.
Третичная структура – это свойственный данному белку способ укладки полипептидой цепи в пространстве. Это основа функциональности белка. Она обеспечивает стабильность обширных участков белка, состоящих из множества аминокислотных остатков и боковых групп. Такие упорядоченные в пространстве участки белка формируют активные центры ферментов или зоны связывания. Повреждение третичной структуры приводит к утрате функциональной активности белка.
Рис. 16.3. Третичная структура белковой
молекулы, образованная за счет ковалентных
связей между остатками двух молекул цистеина
(дисульфидные мостики) [http://www.nsu.ru/education/
Стабильность третичной структуры зависит в основном от нековалентных взаимодействий внутри белковой глобулы – преимущественно водородных связей, ван-дер-ваальсовых сил (ионных или электростатических) и гидрофобных взаимодействий. Но некоторые белки дополнительно стабилизируются за счет таких ковалентных взаимодействий как дисульфидные мостики межу остатками цистеина.
Большинство белковых молекул имеют
участки как альфа-спирали так
и бета-складчатости. Но чаще по форме
третичной структуры разделяют
глобулярные белки –
Размещение в пространстве взаимодействующих между собой субъединиц, образованных отдельными полипептидными цепями, называется четвертичной структурой. Т.е. в формировании четвертичной структуры участвуют не пептидные цепи сами по себе, а глобулы, образованные каждой из этих цепей в отдельности. Четвертичная структура – это высший уровень организации белковой молекулы и он присущ далеко не всем белкам. Связи, формирующие эту структуру нековалентные: водородные, электростатические.
Рис. 16.4. Четвертичная структура
молекулы гемоглобина [http://www.nsu.ru/education/
Фундаментальный принцип молекулярной биологии: последовательность аминокислотных остатков полипептидной цепи белка несет в себе всю информацию, которая необходима для формирования определенной пространственной структуры. Т.е. имеющаяся в данном белке аминокислотная последовательность предопределяет образование альфа- или бета-конформации вторичной структуры за счет образования между этими АК водородных или дисульфидных связей и в дальнейшем формирование глобулярной или фибрилярной структуры также за счет нековалентных взаиомдействий между боковыми учатками определенных аминокислот.
Классификация белков
Человек массой 70 кг ежедневно потребляет с пищей около 80-100 г белка. Кроме того, 10-20 г белка секретируется в виде ферментов и еще приблизительно 20 г белка дают клетки слизистой оболочки, слущивающиеся с поверхности пищеварительного тракта. Практически весь этот белок переваривается и всасывается.
На первой стадии переваривания
пища подвергается механическому измельчению
в полости рта, что увеличивает
площадь поверхности для
Соляная кислота, секретируемая париэтальными клетками желудка убивает бактерии и вызывает разворачивание белковых цепей (денатурацию), что увеличивает поверхность, на которую воздействуют пищеварительные ферменты. Пищеварительные ферменты выделяются в полость желудочно-кишечного тракта в неактивной форме (зимогены), поэтому они не повреждают слой эпителиальных клеток слизистой оболочки, выстилающей полость изнутри.