Автор работы: Пользователь скрыл имя, 06 Июня 2013 в 03:26, курсовая работа
Актуальность выбранной темы. Среди живых организмов, населяющих природные экосистемы суши, способностью к активной биоабсорбции различных токсикантов обладают грибы, ягоды. Однако биологический смысл и природная целесообразность такого явления, как и вопросы о метаболических функциях многих химических элементов в грибах остаются пока не выясненными. Кроме того, существует прикладной аспект данной проблемы: нормативы содержания тяжелых металлов и других токсичных элементов в плодовых телах съедобных грибов, ягодной продукции требуют доработки, остается открытым вопрос об усвояемости химических элементов организмом человека. В связи с этим, проблема оценки качества дикорастущей грибной и ягодной продукции в настоящее время представляется заслуживающей внимания.
ВВЕДЕНИЕ ……………………………………………………………… 3
Накопление токсикантов в грибной продукции ……………………… 5
Грибы как носители экзотоксинов ………………………………… 5
Накопление радионуклидов в грибах ……………………………. 6
Аккумуляция тяжелых металлов грибами ………………………. 16
Накопление токсикантов в ягодной продукции ……………………… 18
Накопление радионуклидов в ягодах …………………………… 18
Накопление тяжелых металлов в ягодной продукции ……………22
ЗАКЛЮЧЕНИЕ ………………………………………………………… 25
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ ………………… 2
Рисунок 3. Распределение мицелия грибов (слева) и 137 Cs в почвенном профиле
Рисунок 4. Многолетняя динамика 137 Cs в грибах с различной глубиной залегания мицелия.
Рисунок 5. Накопление различных радионуклидов в грибах, произрастающих в пределах одного экотопа. Кп – коэффициент перехода
Внутреннее облучение человека. Экспериментальные исследования накопления 137Cs грибами послужили основой для разработки практических рекомендаций. Съедобные грибы, согласно коэффициентам перехода 137Cs в плодовые тела, разделили на группы, внутри которых эта величина изменяется в 2-4 раза. К слабонакапливающим в основном относятся виды из экологической группы древоразрушающих грибов, а к аккумуляторам - виды-симбиотрофы [23].
В странах Западной Европы, где радиоактивное загрязнение природных экосистем невелико, а грибы в рационе населения играют значимую роль, дополнительные нагрузки от их потребления составляют примерно 2/3 дозы внутреннего облучения от использованных всех пищевых ресурсов леса [23]. В ряде стран, в частности скандинавских, наблюдаются сезонные пики загрязнения мяса промысловых животных, связанные с потреблением ими грибов.
Следует учитывать и то обстоятельство, что основная масса мелких сосущих корней, на которых образуется микориза, располагается в подстилке и верхнем 5-см слое почвы, где сосредоточена большая часть радионуклидов – более 90-95%.
В этом отношении максимальной накопительной способностью выделяются гриб польский, свинушка тонкая, масленок поздний. Эти виды грибов можно использовать в качестве биоиндикатора радиоактивного загрязнения лесов. Дело в том, что даже на относительно чистой территории (0,1 Ки/км2) они накапливают l37 Cs значительно выше допустимых норм (370 Бк/кг). Возможно, что в последующем, по мере миграции 137 Cs в более глубокие почвенные слои, в ряду накопления грибов могут происходить перестановки и максимальным накоплением станут характеризоваться другие их виды [26].
Другим, не менее значимым фактором, определяющим накопление радионуклидов съедобными грибами, являются условия их произрастания. По данным грибы в условиях повышенного увлажнения накапливают значительно большее количество радионуклидов, чем те же самые виды, но в условиях автоморфных почв.
Значительное содержание стабильных изотопов цезия в почве предотвращает накопление в грибах радиоактивного цезия. Наибольшее содержание радионуклидов наблюдается в грибах, растущих на кислых почвах.
Вместе с тем грибы не отличаются повышенной накопительной способностью по отношению к 90 Sr и изотопам плутония (238 Pu, 239 Pu, 240 Pu). Установлено, что грибы поглощают радиоцезий гораздо сильнее, чем такой элемент, как калий [22].
Подводя итоги, касающиеся накопления цезия грибами, можно кратко отметить, что концентрация радиоактивного цезия в грибах определяется факторами:
1) величина плотности загрязнения участка произрастания гриба;
2) количеством стабильного цезия в почве;
3) местными характеристиками почв;
4) кислотностью среды;
5) видовыми особенностями грибов.
Накопительные свойства грибов
определяются также условиями их
произрастания, и, в первую очередь,
степенью увлажнения почв. На увлажненных
и переувлажненных лесных почвах
грибы накапливают
Учеными предложена классификация грибов по накопительной способности 137 Cs. В соответствии с этой классификацией съедобные грибы разделяются на четыре группы (приложение А):
1) слабо накапливающие: дождевик жемчужный, вешенка, сыроежка, шампиньон, гриб-зонтик пестрый, опенок осенний − Кп до 5;
2) средне накапливающие: подосиновик, рядовка серая, лисичка настоящая, белый гриб − Кп от 5 до 20;
3) сильно накапливающие: сыроежки всех видов, груздь черный, волнушка розовая, лисичка, подберёзовик, зеленка − Кп от 20 до 50;
4) аккумуляторы радиоцезия: масленок поздний, моховик, рыжик, маслёнок, козляк, свинушка тонкая, польский гриб − Кп > 50.
Анализ коэффициентов перехода радиоцезия в плодовые тела съедобных грибов, опубликованных в различных источниках, показывает, что различия в накоплении 137 Cs обусловлены принадлежностью грибов к различным экологическим группам: почвенным сапрофитам (организмы, существующие за счет разрушения отмерших органических остатков), подстилочным сапрофитам, микоризообразователям (грибы, образующие симбиоз мицелия гриба с корнем высшего растения), ксилофитам (живет на пнях и разлагающихся остатках деревьев), биотрофом (паразитирует на живых растениях). Наименьшие значения коэффициентов перехода наблюдаются у таких экологических групп грибов как подстилочные сапрофиты и ксилофитные паразиты. Максимальной концентрацией характеризуются виды микоризообразователи. Очевидно, это связано с широким варьированием глубины залегания грибного мицелия, а также приуроченностью его к наиболее загрязненным слоям органоминеральной толщи почв [15].
Итак, анализ коэффициентов накопления радиоактивного цезия (отношение концентрации элемента в компоненте к концентрации в почве) показал, что в биоте лесного биогеоценоза грибы – самые сильные накопители всех элементов (в особенности 137 Cs). В травяно-кустарничковой растительности и структурных частях древесного яруса этих элементов гораздо меньше. Значит, при употреблении грибов, собранных в загрязненных радионуклидами и тяжелыми металлами лесах, высока вероятность не только внутреннего облучения, но и усиленного воздействия этих элементов на организм человека. Отсюда очевидно, что в условиях техногенного загрязнения наиболее действенная мера – просто не есть собранные в лесу грибы и выращивать их в искусственных условиях. Сегодня современные технологии вполне могут обеспечить всех любителей грибов этим продуктом [1].
1.3 Аккумуляция тяжелых металлов грибами
Грибы могут накапливать тяжелые металлы: кадмий, ртуть, свинец, медь, цинк и другие. Концентрация этих металлов в грибах выше, чем в почве, на которой они растут. Этой концентрации часто недостаточно, чтобы вызвать тяжелое отравление, но тяжелые металлы могут влиять на ферментные системы, осложняя процессы обезвреживания токсинов, содержащихся в грибах [5, 25].
Концентрация тяжелых металлов в шляпках грибов выше, чем в ножках. Многое зависит от вида гриба. Установлено, что свинушки, а также черные грузди особенно интенсивно накапливают медь, а шампиньоны и белые грибы – ртуть [6].
Грибы обладают избирательной
способностью к накоплению элементов,
в частности опасных для
Все дело в том, что грибы – нефотосинтезирующие растения (вообще-то, грибы – не растения и не животные, это отдельное царство в классификации живых существ), обладающие иным механизмом питания; они имеют специфическое сродство к некоторым элементам. Самая высокая степень накопления грибами (индекс аккумуляции) характерна для ртути, кадмия, меди, цинка и селена. Биологическим накоплением кадмия отличаются подберезовик и зонтик, а меди – груздь и дождевик. Особой способностью к накоплению кобальта и цинка выделяются опята [18].
Многие исследователи отмечают, что грибы интенсивно накапливают тяжелые металлы, более того, к некоторым из них имеют специфическое сродство. Они могут аккумулировать Cd, Cu, Zn, Hg и ряд других элементов. Так, ртути в них может быть в 550 раз больше, чем в субстрате, на котором они произрастают. Виды рода Leccinum (обабок), Macrolepiota (гриб-зонтик) хорошо поглощают Cd; свинушка тонкая (Paxillus involutus), груздь черный (Lactarius necator) и дождевик гигантский (Lycoperdon maximum) – Cu; виды рода Agaricus (шампиньон) и белый гриб (Boletus edulis) – Hg. Тяжелые металлы необратимо влияют на биохимический аппарат грибов, а их употребление приводит к тяжелым отравлениям [17].
В целом накопление тяжелых металлов, как и радионуклидов, определяется химической природой самого элемента, биологическими особенностями видов грибов, а также условиями их произрастания [24].
По литературным данным для некоторых грибов содержание отдельных элементов оказывается граничным или превышающим нормальное (Cd – в белом и желчном; Cu – в горькушке; Zn – в белом, горькушке и сыроежке). В этом случае их концентрация в грибах увеличивается в 2-5 раз. Среди элементов-загрязнителей минимальные колебания концентраций характерны для Pb, максимальные – для Cu. Более высокое содержание тяжелых металлов в грибах наблюдается в различных по накопительной способности экотопах. Как правило, это тесно связано с наличием в почвах подвижных форм элементов и слабо – с валовым содержанием. Видимо, грибы плохо или совсем не усваивают труднорастворимые формы. Известно, что обменные процессы наиболее интенсивны в шляпках, поэтому и концентрация макро- и микроэлементов там выше, чем в ножках. По мере развития плодовых тел меняется и интенсивность аккумуляции элементов. В молодых плодовых телах их, как правило, больше, чем в старых [7, 10].
Меньшая концентрация всех тяжелых металлов характерна для сапротрофов, большая – для симбиотрофов. Но поскольку селективность отдельных грибов по отношению к металлам неодинакова, для тяжелых металлов достаточно трудно выделить виды-биоиндикаторы. Так, Pb максимально поглощается желчным грибом; Zn – белым, горькушкой и сыроежкой; Cu – сыроежкой и горькушкой; Cd – белым. Тем не менее, в первом приближении можно сказать, что лучшими биоиндикаторными свойствами по отношению к тяжелым металлам обладают горькушка (Lactarius rufus) и желчный гриб (Tylopilus felleus) [19].
Леса Беларуси богаты ягодными растениями, которые не только обладают целебными свойствами, но и широко используются в качестве продуктов питания. Традиционно население собирает ягоды клюквы, брусники, черники, голубики, земляники, малины, калины, ежевики, рябины, крушины. В результате аварии на ЧАЭС сбор ягод сильно ограничился на загрязненной территории, максимальные потери пришлись на чернику и клюкву.
Полностью отказаться от использования
дикорастущих ягод населению не представляется
возможным в связи с
2.1 Накопление радионуклидов в ягодах
На поступление радионуклидов
в ягоды влияет множество факторов,
таких как физиологические
Установлено, что содержание радионуклидов в лесных ягодах находится в прямой зависимости от плотности радиоактивного загрязнения почв. Так, с ростом загрязнения почвы по 137Cs в диапазоне 18-1200 кБк/м2 активность черники возрастала от 70 до 5900 Бк/кг, а земляники от 20 до 3200 Бк/кг. На легких почвах происходит более интенсивное накопление радионуклидов, чем на тяжелых. Переход радионуклидов в ягоды, произрастающие в условиях повышенного увлажнения, больше, чем в ягоды, произрастающие в обычных и сухих местах. Выявлено влияние рельефа на накопление радионуклидов лесными ягодами. К примеру, концентрация 137Cs в чернике, собранной на вершине бугра, в 1,5-2 раза ниже, чем на склоне и понижении.
В отличие от грибов лесные ягоды являются концентраторами 90Sr. При равной плотности радиоактивного загрязнения лесных почв 137Cs и 90Sr последний накопится в 10 раз больше в землянике и в 5 раз больше в малине. Однако, в чернику переход 137Cs из почвы по сравнению со 90Sr выше [23].
Анализ многолетних данных по загрязнению ягод показывает устойчивую тенденцию к уменьшению содержания в них радионуклидов во времени. Тем не менее, проведенные в 1998 году службой радиационного контроля исследования показали, что в среднем по республике превышение допустимого уровня содержания цезия-137 наблюдалось в 25% проб клюквы (максимальная концентрация достигала 15750 Бк/кг), в 35% проб черники (содержание достигало 6650 Бк/кг) и 24% проб ягод брусники, голубики, малины и ежевики (содержание достигало 1110 Бк/кг). Допустимая концентрация радионуклидов в дикорастущих ягодах и консервированных продуктах из них составляет 185 Бк/кг. Даже на относительно чистых лесных землях (1-2 Ки/км2) ягоды из семейства брусничных (черника, клюква, брусника, голубика) накапливают радионуклиды в количествах, превышающих нормы РДУ [1].
По интенсивности накопления 137Cs в порядке увеличения дикорастущие ягоды можно расположить следующим образом: калина, рябина, земляника, ежевика (куманика), малина, брусника, голубика, клюква, черника. При равных условиях черника накапливает 137Cs в 2-3 раза больше, чем малина и земляника.
Ягоды по их способности накапливать 137Cs, можно условно поделить на три группы:
Информация о работе Накопление токсикантов в ягодной и грибной продукции