Клеточная теория, история и современное состояние, ее значение для биологии и медицины

Автор работы: Пользователь скрыл имя, 10 Декабря 2014 в 14:23, реферат

Краткое описание

Клеточная теория – одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов.
Клеточная теория – это обобщенные представления о строении клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.

Прикрепленные файлы: 1 файл

Клеточная теория.docx

— 52.78 Кб (Скачать документ)

3. Концепция стационарного состояния  в соответствии с которой жизнь  существовала всегда.

4. Концепция панспермии – внеземного  происхождения жизни;

5. Концепция происхождения жизни  на Земле в историческом прошлом  в результате процессов подчиняющихся  физическим и химическим законам.

Согласно креационизму возникновение жизни относится к определённому событию в прошлом которое можно вычислить. В 1650 г. архиепископ Ашер из Ирландии вычислил что Бог сотворил мир в октябре 4004 г. до н.э., а в 9 часов утра 23 октября и человека. Это число он получил из анализа возрастов и родственных связей всех упоминаемых в Библии лиц. Однако к тому времени на Ближнем Востоке уже была развитая цивилизация, что доказано археологическими изысканиями. Впрочем, вопрос сотворения мира и человека не закрыт, поскольку толковать тексты Библии можно по-разному.

Аристотель на основе сведений о животных, которые поступали от воинов Александра Македонского и купцов-путешественников, сформулировал идею постепенного и непрерывного развития живого из неживого и создал представление о «лестнице природы» применительно к животному миру. Он не сомневался в самозарождении лягушек, мышей и других мелких животных. Платон говорил о самозарождении живых существ из земли в процессе гниения.

С распространением христианства идеи самозарождения были объявлены еретическими, и долгое время о них не вспоминали. Гельмонт придумал рецепт получения мышей из пшеницы и грязного белья. Бэкон тоже считал, что гниение – зачаток нового рождения. Идеи самозарождения поддерживали Галилей, Декарт, Гарвей, Гегель, Ламарк.

В 1688 г. итальянский биолог Франческо Реди серией опытов с открытыми и закрытыми сосудами доказал, что появляющиеся в гниющем мясе белые маленькие черви – это личинки мух, и сформулировал свой принцип: всё живое – из живого. В 1860 г. Пастер показал, что бактерии могут быть везде и заражать неживые вещества, для избавления от них необходима стерилизация, получившая название пастеризации.

Теория панспермии (гипотеза о возможности переноса Жизни во Вселенной с одного космического тела на другие) не предлагает никакого механизма для объяснения первичного возникновения жизни и переносит проблему в другое место Вселенной. Либих считал, что «атмосферы небесных тел, а также вращающихся космических туманностей можно считать как вековечные хранилища оживлённой формы, как вечные плантации органических зародышей», откуда жизнь рассеивается в виде этих зародышей во Вселенной.

Подобным образом мыслили Кельвин, Гельмгольц и др. в начале нашего века с идеей радиопанспермии выступил Аррениус. Он описывал, как с населённых другими существами планет уходят в мировое пространство частички вещества, пылинки и живые споры микроорганизмов. Они сохраняют свою жизнеспособность, летая в пространстве Вселенной за счёт светового давления. Попадая на планету с подходящими условиями для жизни, они начинают новую жизнь на этой планете.

В конце 60-х годов вновь возрос интерес к гипотезам панспермии. Так, геолог Б.И. Чувашов (Вопросы философии. 1966) писал, что жизнь во Вселенной, по его мнению, существует вечно. При изучении вещества метеоритов и комет были обнаружены многие «предшественники живого» – органические соединения, синильная кислота, вода, формальдегид, цианогены. Формальдегид, в частности, обнаружен в 60% случаев в 22 исследованных областях, его облака с концентрацией примерно 1 тысяча молекул в куб. см заполняют обширные пространства. В 1975 г. предшественники аминокислот найдены в лунном грунте и метеоритах. Сторонники гипотезы занесения жизни из космоса считают их «семенами», посеянными на Земле.

В представлениях о зарождении жизни в результате физико-химических процессов важную роль играет эволюция живой планеты. По мнению многих биологов, геологов и физиков, состояние Земли за время её существования всё время изменялось. В очень давние времена Земля была горячей планетой, её температура достигала 5–8 тысяч градусов. По мере остывания планеты тугоплавкие металлы и углерод конденсировались и образовывали земную кору, которая не была ровной из-за активной вулканической деятельности и всевозможных подвижек формирующегося грунта. Атмосфера первичной Земли сильно отличалась от современной. Лёгкие газы – водород, гелий, азот, кислород, аргон и другие – не удерживались пока недостаточно плотной планетой, тогда как их более тяжёлые соединения оставались (вода, аммиак, двуокись углерода, метан). Вода оставалась в газообразном состоянии, пока температура не упала ниже 100оС.

Химический состав нашей планеты сформировался в результате космической эволюции вещества солнечной системы, в ходе которой возникли определённые пропорции количественных соотношений атомов.

А.И. Опарин высказал предположение, что при мощных электрических разрядах в земной атмосфере, которая 4–4,5 млрд. лет назад состояла из азота, водорода, углекислого газа, паров воды и аммиака, возможно, с добавкой синильной кислоты (ее обнаружили в хвостах комет), могли возникнуть простейшие органические соединения, необходимые для возникновения жизни. Поэтому возникающие на поверхности Земли органические вещества могли накапливаться, не окисляясь. И сейчас на нашей планете они накапливаются только в бескислородных условиях, так возникают торф, каменный уголь и нефть. Создатель материалистической гипотезы возникновения жизни на Земле, русский биохимик, академик Александр Иванович Опарин (1894–1980) посвятил всю свою жизнь проблеме происхождения живого.

Американский биолог Ж. Леб в 1912 г. первым получил из смеси газов под действием электрического разряда простейший компонент белков – аминокислоту глицин. Возможно, кроме глицина он получил и другие аминокислоты, но в то время еще не было методов, позволяющих определить их малые количества.

Открытие Леба прошло незамеченным, поэтому первый абиогенный синтез органических веществ (т.е. идущий без участия живых организмов) из случайной смеси газов приписывают американским ученым С. Миллеру и Г. Юри. В 1953 г. они поставили эксперимент по программе, намеченной Опариным, и получили под действием электрических разрядов напряжением до 60 тыс. В, имитирующих молнию, из водорода, метана, аммиака и паров воды под давлением в несколько Паскалей при t=80оС сложную смесь из многих десятков органических веществ. Среди них преобладали органические (карбоновые) кислоты – муравьиная, уксусная и яблочная, их альдегиды, а также аминокислоты (в том числе глицин и аланин). Опыты Миллера и Юри были многократно проверены на смесях разных газов и при разных источниках энергии (солнечный свет, ультрафиолетовое и радиоактивное излучение и просто тепло). Органические вещества возникали во всех случаях. Полученные Миллером и Юри результаты побудили ученых различных стран заняться исследованиями возможных путей предбиологической эволюции. В 1957 году в Москве состоялся первый Международный симпозиум по проблеме происхождения жизни.

По данным, полученным в последнее время нашими учеными, простейшие органические вещества могут возникать и в космическом пространстве при температуре, близкой к абсолютному нулю. В принципе Земля могла бы получить абиогенные органические вещества и как приданое при возникновении.

В результате океан превратился в сложный раствор органических веществ (т.н. первичный океан), которым в принципе могли бы питаться анаэробные бактерии (организмы, способные жить и развиваться при отсутствии свободного кислорода и получающие энергию для жизнедеятельности за счет расщепления органических или неорганических веществ). Кроме аминокислот в нем были и предшественники нуклеиновых кислот – пуриновые основания, сахара, фосфаты и др.

Однако низкомолекулярные органические вещества еще не жизнь. Основу жизни представляют биополимеры – длинные молекулы белков и нуклеиновых кислот, слагающиеся из звеньев – аминокислот и нуклеотидов. Реакция полимеризации первичных звеньев в водном растворе не идет, так как при соединении друг с другом двух аминокислот или двух нуклеотидов отщепляется молекула воды. Реакция в воде пойдет в обратную сторону. Скорость расщепления (гидролиза) биополимеров будет больше, чем скорость их синтеза. В цитоплазме наших клеток синтез биополимеров – сложный процесс, идущий с затратой энергии АТФ. Чтобы он шел, нужны ДНК, РНК и белки, которые сами являются результатом этого процесса. Ясно, что биополимеры не могли возникнуть сами в первичном океане.

Возможно, первичный синтез биополимеров шел при замораживании первичного океана или же при нагревании сухого его остатка. Американский исследователь С.У. Фокс, нагревая до 130оС сухую смесь аминокислот, показал, что в этом случае реакция полимеризации идет (выделяющаяся вода испаряется) и получаются искусственные протеиноиды, похожие на белки, имеющие до 200 и более аминокислот в цепи. Растворенные в воде, они обладали свойствами белков, представляли питательную среду для бактерий и даже катализировали (ускоряли) некоторые химические реакции, как настоящие ферменты. Возможно, они возникали в предбиологическую эпоху на раскаленных склонах вулканов, а затем дожди смывали их в первичный океан. Есть и такая точка зрения, что синтез биополимеров шел непосредственно в первичной атмосфере и образующиеся соединения выпадали в первичный океан в виде частиц пыли.

Следующий предполагаемый этап возникновения жизни – протоклетки. А.И. Опарин показал, что в стоящих растворах органических веществ образуются коацерваты – микроскопические «капельки», ограниченные полупроницаемой оболочкой – первичной мембраной. В коацерватах могут концентрироваться органические вещества, в них быстрее идут реакции, обмен веществ с окружающей средой, и они даже могут делиться, как бактерии. Подобный процесс наблюдал при растворении искусственных протеиноидов Фокс, он назвал эти шарики микросферами.

В протоклетках вроде коацерватов или микросфер шли реакции полимеризации нуклеотидов, пока из них не сформировался протоген – первичный ген, способный катализировать возникновение определенной аминокислотной последовательности – первого белка. Вероятно, первым таким белком был предшественник фермента, катализирующего синтез ДНК или РНК. Те протоклетки, в которых возник примитивный механизм наследственности и белкового синтеза, быстрее делились и забрали в себя все органические вещества первичного океана. На этой стадии шел уже естественный отбор на скорость размножения; любое усовершенствование биосинтеза подхватывалось, и новые протоклетки вытесняли все предыдущие.

Последние этапы возникновения жизни – происхождение рибосом и транспортных РНК, генетического кода и энергетического механизма клетки с использованием АТФ – еще не удалось воспроизвести в лаборатории. Все эти структуры и процессы имеются уже у самых примитивных микроорганизмов, и принцип их строения и функционирования не менялся за всю историю Земли.

Пока можно лишь утверждать, что на возникновение жизни в земном варианте потребовалось относительно мало времени – менее одного млрд. лет. Уже 3,8 млрд. лет назад существовали первые микроорганизмы, от которых произошло все многообразие форм земной жизни.

Жизнь возникла на земле абиогенным путем. В настоящее время живое происходит только от живого (биогенное происхождение). Возможность повторного возникновения жизни на земле исключена.

 

Строение хромосом. Виды хромосом. Гетеро- и эухроматин

 

Хромосомы – органоиды клеточного ядра, совокупность которых определяет основные наследственные свойства клеток и организмов. Полный набор хромосом в клетке, характерный для данного организма, называется кариотипом. В любой клетке тела большинства животных и растений каждая хромосома представлена дважды: одна из них получена от отца, другая – от матери при слиянии ядер половых клеток в процессе оплодотворения. Такие хромосомы называются гомологичными, набор гомологичных хромосом – диплоидным. В хромосомном наборе клеток раздельнополых организмов присутствует пара (или несколько пар) половых хромосом, как правило, различающихся у разных полов по морфологическим признакам; остальные хромосомы называются аутосомами. У млекопитающих в половых хромосомах локализованы гены, определяющие пол организма.

Первоначально хромосомы были описаны как интенсивно окрашивающиеся основными красителями плотные тельца (немецкий учёный В. Вальдейер, 1888). Однако оказалось, что внешний вид хромосом существенно меняется на разных стадиях клеточного цикла, и как компактные образования с характерной морфологией хромосомы четко различимы в световом микроскопе лишь в период клеточного деления – в метафазе митоза и мейоза. Основу хромосом на всех стадиях клеточного цикла составляют хромонемы – нитевидные структуры, которые во время деления клетки плотно закручены, обусловливая спирализацию хромосом, а в неделящейся клетке раскручены (деспирализованы). При завершении деления клетки разошедшиеся к её полюсам хромосомы разрыхляются и окружаются ядерной мембраной. В период между двумя делениями клетки (эта стадия клеточного цикла называется интерфазой) деспирализация хромосом продолжается и они становятся малодоступными для наблюдения в световой микроскоп. Морфология хромосом эукариот существенно отличается от таковой у прокариот и вирусов. Прокариоты (доядерные) и вирусы содержат обычно одну линейную или кольцевую хромосому, которая не имеет надмолекулярной укладки и не отделена от цитоплазмы ядерной оболочкой. Понятие хромосома к генетическому аппарату прокариот применимо лишь условно, т. к. оно сформировалось при изучении хромосом эукариот и подразумевает наличие в них не только сложного комплекса биополимеров (нуклеиновых кислот и белков), но и специфической надмолекулярной структуры. Изменения внешнего вида хромосом в клеточном и жизненном циклах обусловлены особенностями функционирования хромосом. Общий же принцип их организации, индивидуальность и непрерывность в ряду клеточных поколений и организмов сохраняются неизменными. Доказательства тому получены при биохимическом, цитологическом и генетическом исследованиях хромосом разных организмов. Они легли в основу хромосомной теории наследственности.

Значение хромосом как клеточных органоидов, ответственных за хранение, воспроизведение и реализацию наследственной информации, определяется свойствами биополимеров, входящих в их состав. Первая молекулярная модель хромосомы была предложена в 1928 Н.К. Кольцовым, предугадавшим принципы их организации. Запись наследственной информации в хромосомах обеспечивается строением молекулы дезоксирибонуклеиновой кислоты (ДНК), её генетическим кодом. В хромосомах сосредоточено около 99% всей ДНК клетки, остальная часть ДНК находится в других клеточных органоидах, определяя цитоплазматическую наследственность. ДНК в хромосомах эукариот находится в комплексе с основными белками – гистонами и с негистоновыми белками, которые обеспечивают сложную упаковку ДНК в хромосомах и регуляцию её способности к синтезу рибонуклеиновых кислот (РНК) – транскрипции.

Информация о работе Клеточная теория, история и современное состояние, ее значение для биологии и медицины