Клеточная теория, история и современное состояние, ее значение для биологии и медицины

Автор работы: Пользователь скрыл имя, 10 Декабря 2014 в 14:23, реферат

Краткое описание

Клеточная теория – одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов.
Клеточная теория – это обобщенные представления о строении клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.

Прикрепленные файлы: 1 файл

Клеточная теория.docx

— 52.78 Кб (Скачать документ)

Клеточная теория, история и современное состояние, ее значение для биологии и медицины

 

Клеточная теория – одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов.

Клеточная теория – это обобщенные представления о строении клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.

Появлению и формулированию отдельных положений клеточной теории предшествовал довольно длительный период накопления наблюдений над строением различных одноклеточных и многоклеточных организмов растений и животных. Этот период был связан с развитием применения и усовершенствования различных оптических методов исследований.

Клеточная теория – основополагающая для общей биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Маттиас Шлейден и Теодор Шванн сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка из клетки).

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.

В 1665 году английский физик Р. Гук в работе «Микрография» описал строение пробки, на тонких срезах которой он нашёл правильно расположенные пустоты. Эти пустоты Гук назвал «порами, или клетками». Наличие подобной структуры было известно ему и в некоторых других частях растений.

В 1670-х годах итальянский медик и натуралист М. Мальпиги и английский натуралист Н. Грю описали в разных органах растений «мешочки, или пузырьки» и показали широкое распространение у растений клеточного строения. Клетки изображал на своих рисунках голландский микроскопист А. Левенгук. Он же первым открыл мир одноклеточных организмов – описал бактерий и протистов (инфузорий).

В XVIII веке совершаются первые попытки сопоставления микроструктуры клеток растений и животных. К.Ф. Вольф в работе «Теории зарождения» (1759) пытается сравнить развитие микроскопического строения растений и животных. По Вольфу, зародыш как у растений, так и у животных развивается из бесструктурного вещества, в котором движения создают каналы (сосуды) и пустоты (клетки). Фактические данные, приводившиеся Вольфом, были им ошибочно истолкованы и не прибавили новых знаний к тому, что было известно микроскопистам XVII века. Однако его теоретические представления в значительной мере предвосхитили идеи будущей клеточной теории.

В первую четверть XIX века происходит значительное углубление представлений о клеточном строении растений, что связано с существенными улучшениями в конструкции микроскопа (в частности, созданием ахроматических линз).

Пуркинье и его ученики (особенно следует выделить Г. Валентина) выявили в первом и самом общем виде микроскопическое строение тканей и органов млекопитающих (в том числе и человека).

Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды); его ученик Генле опубликовал исследование о кишечном эпителии, в котором дал описание различных его видов и их клеточного строения.

Здесь были выполнены классические исследования Теодора Шванна, заложившие основание клеточной теории. На работу Шванна оказала сильное влияние школа Пуркинье и Генле. Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.

На значение ядра в клетке Шванна натолкнули исследования Матиаса Шлейдена, у которого в 1838 году вышла работа «Материалы по фитогенезу». Поэтому Шлейдена часто называют соавтором клеточной теории. Основная идея клеточной теории – соответствие клеток растений и элементарных структур животных – была чужда Шлейдену. Он сформулировал теорию новообразования клеток из бесструктурного вещества, согласно которой сначала из мельчайшей зернистости конденсируется ядрышко, вокруг него образуется ядро, являющееся образователем клетки (цитобластом). Однако эта теория опиралась на неверные факты.

В 1838 году Шванн публикует 3 предварительных сообщения, а в 1839 году появляется его классическое сочинение «Микроскопические исследования о соответствии в структуре и росте животных и растений», в самом заглавии которого выражена основная мысль клеточной теории.

С 1840-х века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки – цитологию.

В 1861 году Брюкко выдвигает теорию о сложном строении клетки, которую он определяет как «элементарный организм», выясняет далее развитую Шлейденом и Шванном теорию клеткообразования из бесструктурного вещества (цитобластемы). Обнаружено, что способом образования новых клеток является клеточное деление, которое впервые было изучено Молем на нитчатых водорослях. В опровержении теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и Н.И. Желе.

Деление тканевых клеток у животных было открыто в 1841 г. Ремарком. Выяснилось, что дробление бластомеров есть серия последовательных делений (Биштюф, Н.А. Келликер). Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма: Всякая клетка – из другой клетки.

Работы Вирхова оказали неоднозначное влияние на развитие клеточного учения:

Клеточная теория распространялась им на область патологии, что способствовало признанию универсальности клеточного учения. Труды Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванна, привлекли внимание к протоплазме и ядру, признанными наиболее существенными частями клетки.

Вирхов направил развитие клеточной теории по пути чисто механистической трактовки организма.

Вирхов возводил клетки в степень самостоятельного существа, вследствие чего организм рассматривался не как целое, а просто как сумма клеток.

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Основные положения клеточной теории сохранили свое значение и на сегодняшний день, хотя более чем за сто пятьдесят лет были получены новые сведения о структуре, жизнедеятельности и развитии клеток. В настоящее время клеточная теория постулирует:

Клетка – элементарная единица живого.

Вне клетки нет жизни.

Клетка – единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование, состоящее из сопряженных функциональных единиц – органелл или органоидов.

Клетки сходны – гомологичны – по строению и по основным свойствам.

Клетки увеличиваются в числе путем деления исходной клетки после удвоения ее генетического материала: клетка от клетки.

Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных в системы тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных.

Клетки многоклеточных организмов тотипотентны, т.е. обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией различных генов, что приводит к их морфологическому и функциональному разнообразию – к дифференцировке.

 

Биосинтез белка

 

В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам. Белковые вещества составляют основу всех жизненно важных структур клетки, они входят в состав цитоплазмы. Белки обладают необычайно высокой реакционной способностью. Они наделены каталитическими функциями, т.е. являются ферментами, поэтому белки определяют направление, скорость и теснейшую согласованность, сопряженность всех реакций обмена веществ.

Ведущая роль белков в явлениях жизни связана с богатством и разнообразием их химических функций, с исключительной способностью к различным превращениям и взаимодействиям с другими простыми и сложными веществами, входящими в состав цитоплазмы.

Нуклеиновые кислоты входят в состав важнейшего органа клетки – ядра, а также цитоплазмы, рибосом, митохондрий и т.д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

Одной из задач современной биологии и ее новейших разделов – молекулярной биологии, биоорганической химии, физико-химической биологии – является расшифровка механизмов синтеза молекулы белка, содержащей сотни, а иногда и тысячи остатков аминокислот. Механизм синтеза должен обладать точной кодирующей системой, которая автоматически программирует включение каждого аминокислотного остатка в определенное место полипептидной цепи. Кодирующая система определяет первичную структуру, а вторичная и третичная структуры белковой молекулы определяются физико-химическими свойствами и химическим строением аминокислот.

Первоначальные представления, согласно которым синтез белка могут катализировать те же протеолитические ферменты, что и вызывающие его гидролиз, но путем обратимости химической реакции, не подтвердились. Оказалось, что синтетические и катаболические реакции протекают не только различными путями, но и в разных субклеточных фракциях. Не подтвердилась так же гипотеза о предварительном синтезе коротких пептидов с их последующим объединением в единую полипептидную цепь. Более правильным оказалось предположение, что для синтеза белка требуются источники энергии, наличие активированных свободных аминокислот и несколько видов нуклеиновых кислот.

В современные представления о механизме синтеза белка большой вклад внесли советские биохимики. Так, в лаборатории А.Е. Браунштейна было впервые указано на участие АТФ в синтезе квазипептидных связей. В.Н. Ореховичем еще 50-е годы было показано, что перенос аминоцильных или пептидильных группировок на NH2 группу аминокислот может осуществляться не только с амидной или пептидной, но и со сложноэфирной связи. Именно этот механизм лежит в основе реакции транспептидирования в 50S рибосоме в стадии элонгации синтеза белка.

Значительно позже были получены доказательства, что в синтезе белка, протекающем в основном в цитоплазме, решающую роль играют нуклеиновые кислоты, в частности ДНК. После того как было установлено, что ДНК является носителем и хранителем наследственной информации, был поставлен вопрос о том, каким образом эта генетическая информация, записанная (зашифрованная) в химической структуре ДНК, трансформируется в фенотипические признаки и функциональные свойства живых организмов, передающиеся по наследству. В настоящее время можно дать однозначный ответ на этот вопрос: генетическая информация программирует синтез специфических белков, определяющих в свою очередь специфичность структуры и функции клеток, органов и целостного организма. В природе, как известно, существуют два типа биополимерных макромолекул, так называемые неинформативные биополимеры и информативные биополимеры, несущие первичную генетическую информацию и вторичную генетическую, точнее фенотипическую информацию.

Биосинтез белка, хотя непосредственно и регулируется рибонуклеиновыми кислотами, опосредованно связан с контролирующим влиянием ДНК ядра и что РНК сначала синтезируется в ядре, затем поступает в цитоплазму, где выполняет роль матрицы в синтезе белка. Полученные значительно позже экспериментальные данные подтвердили гипотезу о том, что основной функцией нуклеиновых кислот является не только хранение генетической информации, но и реализация этой информации путем программированного синтеза специфических белков.

Однако в этой последовательности ДНК – РНК – Белок недоставало сведений о том, каким образом происходят расшифровка наследственной информации и синтеза специфических белков, определяющие многообразие признаков живых существ. В настоящее время выяснены основные процессы, посредством которых осуществляется передача наследственной информации: они включают репликацию, т.е. синтез ДНК на матрице ДНК, транскрипцию, т.е. перевод языка и типа строения ДНК на молекулу РНК, и трансляцию – процесс, в котором генетическая информация, содержащаяся в молекуле мРНК, направляет синтез соответствующей аминокислотной последовательности в белке. Многие тонкие механизмы транскрипции окончательно не выяснены.

Получены экспериментальные доказательства наличия ДНК также в митохондриях. Она не гомологичная и не комплементарна ядерной ДНК. Предполагается, что митохондриальная ДНК кодирует синтез части структурных белков самих митохондрий.

Аминокислотный код позволяет шифровать аминокислоты, входящие в состав белков, с помощью определенной последовательности нуклеотидов в ДНК и мРНК. Для него характерны определенные свойства: триплетность, специфичность, вырожденность, линейность записи информации, универсальность, колинеарность гена и продукта.

Для синтеза полипептидной цепи необходимо большое количество компонентов, совместное и согласованное взаимодействие приводит к образованию белка.

Синтез белка представляет собой циклический многоступенчатый энергозависимый процесс, в котором свободные аминокислоты полимеризуется в генетически детерминированную последовательность с образованием полипептидов. Система белкового синтеза, точнее система трансляции, которая использует генетическую информацию, транскрибированную в мРНК, для синтеза полипептидной цепи с определенной первичной структурой, включает около 200 типов макромолекул – белков и нуклеиновых кислот. Среди них около 100 макромолекул, участвующих в активировании аминокислот и их переносе на рибосомы, более 60 макромолекул, входящих в состав 70S или 80S рибосом, и около 10S макромолекул, принимающих непосредственное участие в системе трансляции. При помощи изотопного метода было выяснено, что синтез белка начинается с N-конца и завершается C-концом, т.е. процесс протекает в направлении: NH2COOH.

Информация о работе Клеточная теория, история и современное состояние, ее значение для биологии и медицины