Автор работы: Пользователь скрыл имя, 18 Мая 2015 в 19:25, реферат
Биологическое окисление представляет собой совокупность реакций окисления, протекающих во всех живых клетках. Основной функцией данного процесса является обеспечение организма энергией в доступной для использования форме (прежде всего в форме АТФ).
Принципиальной особенностью биологического окисления, или тканевого дыхания, является то, что оно протекает постепенно, через многочисленные промежуточные ферментативные стадии, т. е. происходит многократная передача протонов и электронов или только электронов от одного соединения-донора к другому-акцептору; при этом протоны транспортируются лишь частью промежуточных переносчиков. У аэробов конечным акцептором электронов и протонов служит кислород.
Развитие представлений о биологическом окислении
Биологическое окисление представляет собой совокупность реакций окисления, протекающих во всех живых клетках. Основной функцией данного процесса является обеспечение организма энергией в доступной для использования форме (прежде всего в форме АТФ).
Принципиальной особенностью биологического окисления, или тканевого дыхания, является то, что оно протекает постепенно, через многочисленные промежуточные ферментативные стадии, т. е. происходит многократная передача протонов и электронов или только электронов от одного соединения-донора к другому-акцептору; при этом протоны транспортируются лишь частью промежуточных переносчиков. У аэробов конечным акцептором электронов и протонов служит кислород.
ИЗ ИСТОРИИ РАЗВИТИЯ УЧЕНИЯ О БИОЛОГИЧЕСКОМ ОКИСЛЕНИИ
Изучение процессов окисления в организме было начато в XVIII веке Лавуазье. Он обратил внимание на наличие известного сходства между процессами горения органических веществ вне организма и дыхания животных. Лавуазье считал, что сущность процесса дыхания состоит в соединении кислорода вдыхаемого воздуха с углеродом и водородом органических веществ внутри тела. После работ Лавуазье в науке в течение долгого времени господствовало мнение о тождестве явлений горения и медленного окисления питательных веществ в организме. Вместе с тем было ясно, что биологическое окисление протекает при весьма необычных условиях: при низкой температуре (температура тела), без появления пламени (как это бывает при горении) и, наконец, в присутствии воды, содержание которой обычно достигает в тканях 75-80%, от сырой массы.
Причину столь своеобразного течения окислительных процессов в живых организмах ученые вначале пытались объяснить "активацией" кислорода в клетках организма. Одна из первых теорий биологического окисления, связанных с "активацией" кислорода, была развита А. Н. Бахом, который считал, что "активация" молекулярного кислорода происходит в результате разрыва одной его связи и присоединения к органическим веществам - оксигеназам (обозначим их буквой А), способным к аутооксидации:
Образующиеся высокомолекулярные перекиси отдают активированный кислород при участии ферментов (пероксидаз) субстрату.
Таким образом, по мнению А. Н. Баха, путь использования кислорода в клетках лежит через образование перекисей, поэтому данная теория получила название перекисной теории окисления. Однако истинный механизм главного пути окисления различных субстратов дыхания оказался иным.
Важнейшая заслуга в развитии учения о биологическом окислении принадлежит другому русскому ученому - ботанику и биохимику В. И. Палладину.
Основные положения о механизме биологического окисления В. И. Палладии пояснил на примере окисления глюкозы:
Суммируя эти два уравнения, получим:
С6H12О6 + 602-------> 6СО2 + 6Н20
Здесь R - промежуточные переносчики водорода (пигменты или хромогены, по В. И. Палладину). Исходя из приведенных выше уравнений, следует:
В дальнейшем значительный вклад в изучение биологического окисления (его локализация в клетке, связь с другими процессами обмена веществ, механизмы ферментативных окислительно-восстановительных реакций, аккумуляция и превращение энергии и др.) внесли Варбург, Виланд, Кейлин, Кребс, Митчелл, Грин, Ленинджер, Чанс, Рэкер, а в СССР - В. А. Энгельгардт, В. А. Белицер, С. Е. Северин, В. П. Скулачев и др.
СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О БИОЛОГИЧЕСКОМ ОКИСЛЕНИИ
В переносе электронов от субстратов к молекулярному кислороду принимают участие: 1) пиридинзависимые дегидрогеназы, для которых коферментами служат либо НАД, либо НАДФ; 2) флавинзависимые дегидрогеназы (флавиновые ферменты), у которых роль простетической группы играют ФАД или ФМН; 3) цитохромы, содержащие в качестве простетической группы железопорфириновую кольцевую систему. Среди компонентов дыхательной цепи обнаружены также убихинон (коэнзим Q) и белки, содержащие негемовое, или негеминовое, железо.
Пиридинзависимые дегидрогеназы
К числу пиридинзависимых дегидрогеназ относится свыше 150 ферментов, которые катализируют восстановление НАД и НАДФ различными органическими субстратами. Структура НАД была выяснена Эйлером и соавт. Варбургу принадлежит заслуга открытия НАДФ. НАД и НАДФ являются динуклеотидами, в которых мононуклеотиды связаны между собой через остатки фосфорной кислоты. В состав одного из нуклеотидов входит амид никотиновой кислоты (витамин РР), другой представляет собой адениловую кислоту. В молекуле НАДФ имеется еще один остаток фосфорной кислоты, присоединенный к рибозе в положении С3'.
Катализируемые пиридинзависимыми дегидрогеназами реакции можно изобразить так:
Способность НАД и НАДФ играть роль промежуточного переносчика водорода связана с наличием в их структуре амида никотиновой кислоты. В электронно-протонной форме обратимое гидрирование - дегидрирование (присоединение и отдача протонов и электронов) этих коферментов может быть представлено с помощью следующего уравнения
При переносе двух восстановительных эквивалентов от субстрата на НАД+ один из них затем присутствует в восстановленном коферменте в виде водорода, а другой - в виде электрона. Свободный ион Н+остается в среде. Для простоты обычно восстановленные формы НАД и НАДФ изображают символами НАДН2 и НАДФН2.
Окисленные и восстановленные пиридиннуклеотиды обладают характерными спектрами поглощения в УФ-области. В окисленной форме НАД (НАДФ) имеет одну узкую полосу поглощения с максимумом при 260 нм, зависящую от наличия аденина в его структуре. В восстановленной форме (НАДН2) поглощение света в этой зоне понижается и появляется вторая широкая полоса поглощения с максимумом при 340 нм. Вторая полоса обусловлена исчезновением одной двойной связи в никотинамидном комплексе кофермента при его восстановлении. Это свойство данных коферментов позволяет использовать спектрофотометрические методы анализа для быстрого количественного определения ряда субстратов - доноров водорода, а также для исследования активности НАДФ-зависимых дегидрогеназ.
В клетках НАД-зависимые дегидрогеназы преимущественно участвуют в процессах, связанных с переносом электронов от органических субстратов к кислороду. В свою очередь НАДФ-зависимые дегидрогеназы играют существенную роль в реакциях биосинтеза (например, высших жирных кислот, сте-ринов и др.). В соответствии с этим коферменты НАД и НАДФ различаются по своей внутриклеточной локализации: НАД концентрируется главным образом в митохондриях, а бoльшая часть НАДФ находится в цитоплазме клеток.
Флавиновые ферменты
Следующим акцептором атомов водорода является группа флавиновых ферментов, которые осуществляют перенос водородов (протонов и электронов) от восстановленных НАД или НАДФ:
В некоторых случаях (например, при окислении сукцината или жирных кислот) флавиновые ферменты могут играть роль первичных дегидрогеназ, т. е. прямо, без участия НАД- или НАДФ-зависимых дегидрогеназ, принимать электроны и протоны от окисляемых субстратов.
Насчитывается около 30 флавиновых ферментов. Это сложные белки, простетической группой которых, как уже отмечалось, являются либо ФМН, либо ФАД. ФМН и ФАД очень прочно, в отличие от коферментов НАД и НАДФ, присоединены к ферменту (точнее, к апоферменту) и не отщепляются от него ни на одной из стадий каталитического цикла.
Флавиновые дегидрогеназы, входящие в систему дыхательных катализаторов животных клеток, обычно содержат в качестве простетической группы не ФМН, а ФАД. Впервые ФМН и ФАД были выделены Варбургом в середине 30-х годов XX столетия. В это же время Куном был идентифицирован витамин B2(рибофлавин), который входит в структуру ФАД и ФМН.
Окисленные формы ФМН и ФАД обладают характерным спектром поглощения с максимумом при 450 нм; в окисленном состоянии флавиновые ферменты окрашены в красный, коричневый или зеленый цвет. При восстановлении ФАД и ФМН полоса 450 нм в спектре поглощения исчезает. Активной частью молекулы ФАД или ФМН является изоаллоксазиновое кольцо рибофлавина, к атомам азота которого могут присоединяться два атома водорода, т. е. два электрона и два протона при соответствующей внутримолекулярной перегруппировке двойных связей.
Установлено, что многие из флавиновых дегидрогеназ являются сложными олигомерными образованиями, которые состоят из нескольких белковых субъединиц и содержат, помимо флавиннуклеотидов (ФАД или ФМН), также атомы металлов - чаще всего негемовое (негеминовое) железо. Это так называемые металлофлавопротеиды. По-видимому, наличие атомов металла (Fe, Мn, Сu), способных легко изменять свою валентность, присоединяя или теряя электроны, придает металло-флавопротеидам своеобразный характер, сближая их с типичными электронотранспортазами - цитохромами.
Кофермент Q (убихинон)
Следующим компонентом дыхательной цепи является кофермент Q (KoQ), или убихинон. Этот кофермент впервые был описан Мортоном, который показал, что данное соединение имеет повсеместное распространение в клетках, и назвал его убихиноном. Позже было установлено, что убихинон, подобно НАД и ФАД, может играть роль промежуточного переносчика водородных атомов, т. е. электронов и протонов.
KoQ является производным бензохинона с длинной боковой цепью, которая в большинстве тканей млекопитающих состоит из 10 изопреноидных единиц (KoQ10).
Считают, что восстановленная форма флавиновых ферментов в цепи дыхательных катализаторов передает атомы водорода (протоны и электроны) KoQ. Как всякий хинон, KoQ может существовать как в окисленной, так и восстановленной форме:
Цитохромы
Дальнейший перенос электронов1 (1Принято считать, что цитохромы переносят только электроны.) от KoQ (или от восстановленной формы флавинового фермента) на кислород осуществляет система цитохромов. Данная система состоит из ряда гемсодержащих белков (гемопротеидов), открытых в 1886 г. Мак-Мунном. Однако роль этих гемопротеидов в дыхании клеток была выяснена лишь в 1925 г. Кейлином. В процессе тканевого дыхания наиболее важную роль играют цитохромы b, c1, с, аа3. Все они имеют простетическую геминовую группу, близкую к тему гемоглобина (простетическая группа цитохрома b, как считают, идентична гему).
Приводим структуру простетических групп некоторых цитохромов:
Цитохромы отличаются друг от друга не только своими простетическими группами, но и белковыми компонентами. В ходе каталитического процесса валентность содержащегося в цитохромах железа обратимо изменяется (Fe2+ <--> Fe3+).
Все цитохромы, особенно в восстановленной
форме, имеют характерные спектры поглощения.
Величины окислительно-
цит.b --> цит.c1 --> цит.c --> цит.аа3
Цитохромы b, c1 и с выполняют функцию промежуточных переносчиков электронов, а цитохром аа3 (цитохромоксидаза) является терминальным дыхательным ферментом, непосредственно взаимодействующим с кислородом. Окисленная форма цитохромоксидазы (Fe3+) принимает электроны от восстановленного цитохрома с, переходя в восстановленную форму (Fe2+), которая затем вновь окисляется в Fe3+-форму молекулярным кислородом. Образовавшийся "активный" кислород присоединяет два протона из окружающей среды, в результате чего и образуется молекула воды.
Информация о работе История развития представлений о механизмах биологического окисления