Геном человека. Генная терапия

Автор работы: Пользователь скрыл имя, 27 Декабря 2010 в 22:03, реферат

Краткое описание

В расшифровке генома человека непременно должна присутствовать медико-генетическая часть. Сегодня это один из самых больших разделов программы, который включает генетическое картирование локусов, ответственных за те или иные заболевания, ДНК-диагностику и генотерапию наследственной патологии, изменения генома при опухолевых заболеваниях, правовые и этические проблемы геномных исследований и их медицинских приложений.

Содержание

■Введение…………………………………………………………………………….3
• Геном человека. Проект « Геном человека»….……………………………….….4
• Расшифровка генома человека. СПТ……………………………………………...8
• Протеомика…………………………………………………………………….…..11
• Мнение экспертов………………………………………………………………....12
• Генная терапия…………………………………………………………………….12
• Заключение………………………………………………………………………...16

Прикрепленные файлы: 1 файл

геном человека КСЕ.doc

— 164.50 Кб (Скачать документ)

                                           Принципы генной терапии.

    В зависимости от способа введения экзогенных ДНК в геном пациента генная терапия может проводиться  либо в культуре клеток (ex vivo), либо непосредственно  в организме (in vivo). Клеточная генная терапия или терапия ex vivo предполагает выделение и культивирование специфических типов клеток пациента, введение в них чужеродных генов, отбор трансфецированных клеток и реинфузию их тому же пациенту. В настоящее время в большинстве допущенных к клиническим испытаниям программ генной терапии используется именно этот подход.

    Генная  терапия in vivo основана на прямом введении клонированных и определенным образом  упакованных последовательностей  ДНК в специфические ткани  больного. Особенно перспективным для  лечения генных болезней in vivo представляется введение генов с помощью аэрозольных или инъецируемых вакцин. Аэрозольная генотерапия разрабатывается, как правило, для лечения пульмонологических заболеваний (муковисцидоз, рак легких).

    Разработке  программы генной терапии предшествуют тщательный анализ тканеспецифической экспрессии соответствующего гена, идентификация первичного биохимического дефекта, исследование структуры, функции и внутриклеточного распределения его белкового продукта, а также биохимический анализ патологического процесса. Все эти данные учитываются при составлении соответствующего медицинского протокола. Апробацию процедуры генокоррекции наследственного заболевания проводят на первичных культурах клеток больного, в которых в норме функционально активен данный ген. На этих клеточных моделях оценивают эффективность выбранной системы переноса экзогенной ДНК, определяют экспрессию вводимой генетической конструкции, анализируют ее взаимодействие с геномом клетки, отрабатывают способы коррекции на биохимическом уровне.

    Используя культуры клеток, можно разработать  систему адресной доставки рекомбинантных ДНК, однако проверка надежности работы этой системы может быть осуществлена только на уровне целого организма. Поэтому  такое внимание в программах по генной терапии уделяется экспериментам in vivo на естественных или искусственно полученных моделях соответствующих наследственных болезней у животных. Успешная коррекция генетических дефектов у таких животных и отсутствие нежелательных побочных эффектов генной терапии являются важнейшей предпосылкой для разрешения клинических испытаний.

    Таким образом, стандартная схема генокоррекции  наследственного дефекта включает серию последовательных этапов. Она  начинается созданием полноценно работающей (экспрессирующейся) генетической конструкции, содержащей смысловую (кодирующую белок) и регуляторную части гена. На следующем этапе решается проблема вектора, обеспечивающего эффективную, а по возможности и адресную доставку гена в клетки-мишени. Затем проводится трансфекция (перенос полученной конструкции) в клетки-мишени, оценивается эффективность трансфекции, степень коррегируемости первичного биохимического дефекта в условиях клеточных культур (in vitro) и, что особенно важно, in vivo на животных - биологических моделях. Только после этого можно приступать к программе клинических испытаний.

                             Генотерапия моногогенных наследственных заболеваний.

    Успех первых клинических испытаний явился мощным стимулом для ускорения развития новых генотерапевтических методов  применительно к другим наследственным болезням. Существует список болезней, для которых принципиально возможен генотерапевтический подход, генокоррекция которых с большой вероятностью будет осуществлена уже в обозримом будущем, а также те заболевания, для которых уже имеются официально утвержденные протоколы и которые находятся на разных стадиях клинических испытаний.

                                   Генотерапия ненаследственных заболеваний.

    Одновременно  с развитием исследований в области  генокоррекции наследственных дефектов успешными также оказались поиски методов терапевтического использования смысловых последовательностей ДНК для лечения ненаследственных заболеваний, и главным образом злокачественных опухолей и вирусных инфекций. Существенно, что именно в этих разделах патологии поиски путей генокоррекции проводятся особенно интенсивно, а число уже одобренных протоколов клинических испытаний во много раз превышает число таковых для лечения моногенных болезней.

    Основные методологические подходы к генотерапии различных опухолей, разработанные и уже широко используемые. Многие из этих подходов вполне приложимы и для борьбы с наиболее серьезными инфекционными заболеваниями, например с ВИЧ-инфекцией (СПИДом).

    Результаты  первых клинических испытаний этих подходов оказались в высшей степени обнадеживающими, в особенности при лечении нейродегенеративных и онкологических заболеваний нервной системы.

                    Некоторые этические и социальные проблемы генной терапии.

    Появление принципиально новых технологий, позволяющих активно манипулировать с генами и их фрагментами и обеспечивающих адресную доставку новых блоков генетической информации в заданные участки генома, стало важным событием в биологии и медицине.

    Уже сейчас на современном уровне знаний о геноме человека теоретически вполне возможны такие его модификации с целью улучшения некоторых физических (например, рост), психических и интеллектуальных параметров. Таким образом, современная наука о человеке на своем новом витке развития вернулась к идее улучшения человеческой породы, когда-то постулированной выдающимся английским генетиком Ф. Гальтоном и развитой его учениками и последователями в Великобритании (К. Пирсон, Л. Пенроуз, Дж. Холдэйн), в России (Н.К. Кольцов, Ф.П. Филипченко), в США (Г. Мёллер). Дальнейший ход истории, как известно, полностью дискредитировал саму идею улучшения человеческой породы. Однако грядущее всевластие человека над собственным геномом заставляет вновь и вновь возвращаться к этой теме, делает ее предметом постоянных оживленных дискуссий в широкой и научной печати. Не вызывает сомнения, что первоначальные опасения, связанные с генной инженерией человека, были неоправданны. Уже признано целесообразным применение генной терапии для лечения многих заболеваний. Единственным и непременным ограничением, сохраняющим свою силу и в современных условиях, является то, что все генотерапевтические мероприятия должны быть направлены только на конкретного больного и касаться исключительно его соматических клеток.

    Современный уровень знаний не позволяет проводить коррекцию генных дефектов на уровне половых клеток и клеток ранних доимплантационных зародышей человека в связи с реальной опасностью засорения генофонда нежелательными искусственными генными конструкциями или внесением мутаций с непредсказуемыми последствиями для будущего человечества. Вместе с тем в научной литературе все чаще и настойчивее раздаются призывы к возобновлению дискуссии о целесообразности генокоррекции зародышевых и половых клеток человека.

                                                               
 
 
 

                                                         

                                                                    Заключение

   Развитие  науки идет таким образом, что  мы все точнее и точнее знаем, чего не знаем. Теперь стало совершенно ясно - мы не понимаем, для чего нужна основная часть генома. "Что" - известно, "как" - предстоит узнать. Сейчас уже возможно сформулировать задачу, а это в науке самое трудное. Поставлен вопрос, который до расшифровки генома корректно поставить было просто невозможно.       Теперь же, после прочтения генома, на первый план выходит протеомика, цель которой – быстрее разобраться с тем миллионом белков, которые потенциально могут существовать в наших клетках. Протеомика позволит более тщательно диагностировать генетические отклонения и блокировать неблагоприятное действие мутантных белков на клетку. 
А со временем можно будет планировать и «исправление» генов.

   Энтузиазм в отношении перспектив генной терапии  сейчас несколько "угас" в связи  со значительными трудностями, возникшими на пути практической реализации метода. Отчасти некоторое разочарование в генной терапии было связано с неоправданным ожиданием быстрого успеха, чему способствовало недостаточное или неточное освещение ситуации в данной области, когда недооценивались трудности и преувеличивались ближайшие перспективы генной терапии. Однако это не означает, что развитие генной терапии потерпело неудачу. За короткий период ее существования выполнен огромный объем экспериментальных работ, а также проведены первые клинические исследования, что значительно укрепило научную базу генной терапии. Сегодня многие специалисты считают, что вопрос не в том, будут ли достигнуты значительные клинические успехи в результате проведения генной терапии, а в том, когда это произойдет.

   Если  теперь все это свести воедино, то пугавший когда-то термин “генная терапия  человека” окажется безнадежно устаревшим в силу своей ограниченности. Сегодня  полноразмерным является комплекс “генных  технологий человека”, уже начинающий плавно перерастать в еще более широкомасштабный комплекс ближайшего будущего – технологии “биологической реконструкции человека”. Для тех, кто не работает в данной области, такие понятия звучат как нечто за гранью фантастики. А специалисты развитых стран прогнозируют начало рутинного применения в клиниках первых технологий генной терапии рубежом оканчивающегося века, т. е. всего-то через каких-нибудь 3 года.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                       Литература:

  1. Баранов В. С. Генная терапия – медицина XXI века // Соросовский образовательный журнал. -1999.-№3 – С. 63-68
  2. Батанева Т.  XXI век будет веком генной терапии // Известие – 1999-29 декабря-с. 1
  3. Геном человека // Знамя – 2000.-№ 10. С.165-182
  4. Киселев Л. программы "Геном человека" // Журнала «Наука и Жизнь».
  5. www.hemgene.al.ru

Информация о работе Геном человека. Генная терапия