Геном человека. Генная терапия

Автор работы: Пользователь скрыл имя, 27 Декабря 2010 в 22:03, реферат

Краткое описание

В расшифровке генома человека непременно должна присутствовать медико-генетическая часть. Сегодня это один из самых больших разделов программы, который включает генетическое картирование локусов, ответственных за те или иные заболевания, ДНК-диагностику и генотерапию наследственной патологии, изменения генома при опухолевых заболеваниях, правовые и этические проблемы геномных исследований и их медицинских приложений.

Содержание

■Введение…………………………………………………………………………….3
• Геном человека. Проект « Геном человека»….……………………………….….4
• Расшифровка генома человека. СПТ……………………………………………...8
• Протеомика…………………………………………………………………….…..11
• Мнение экспертов………………………………………………………………....12
• Генная терапия…………………………………………………………………….12
• Заключение………………………………………………………………………...16

Прикрепленные файлы: 1 файл

геном человека КСЕ.doc

— 164.50 Кб (Скачать документ)

   Сингулярность по-латыни означает одиночество, что-то единственное. СНП – это изменение «буквы» генетического кода без «последствий для здоровья». Считается, что у человека СНП встречается с частотой 0,1%, т.е. каждый человек отличается от других одним нуклеотидом на каждую тысячу нуклеотидов. У шимпанзе, представляющей собой более древний вид, и к тому же гораздо более гетерогенный, число СНП при сравнении двух разных особей достигает 0,4%.

   Но  если различия в СНП не сказываются  на здоровье особей, то чем они интересны  и важны? Во-первых, изучение СНП  имеет большое теоретическое значение. Именно они позволяет сравнивать возрасты популяций и определять пути их миграции. Так, например, в мужской половой хромосоме (Y) выделены 22 фактора СНП, анализ которых у 1007 европейцев позволил определить, что 80% европейских мужчин имеют сходный «СНП-паттерн», т.е. «рисунок». Это говорит о том, что тысячи поколений назад 4/5 европейских мужчин имели общего предка!

   Но  и практическое значение СНП велико. Возможно, не все знают, что сегодня  самые распространенные лекарства  эффективны не более чем для четверти населения. Минимальные генетические отличия, обусловленные СНП, определяют эффективность лекарств и их переносимость в каждом конкретном случае. Так, у больных диабетом выявили 16 специфических СНП. Всего при анализе 22-й хромосомы определили местоположение 2730 СНП. В одном из генов, кодирующих синтез рецептора адреналина, выявлено 13 СНП, которые могут комбинироватьcя друг с другом, давая 8192 различных варианта (гаплотипа).

   Насколько скоро и полно начнет использоваться полученная информация, пока не совсем ясно. Пока же приведем еще один конкретный пример.

   Среди астматиков довольно популярно лекарство  албутерол, который взаимодействует  с указанным рецептором адреналина и подавляет приступ удушья. Однако из-за разнообразия гаплотипов людей лекарство действует не на всех, а некоторым больным оно вообще противопоказано. Это обусловлено СНП: люди с последовательностью букв в одном из генов ТЦТЦЦ (Т–тимин, Ц–цитозин) не реагируют на албутерол, если же концевой цитозин заменен на гуанин (ТЦТЦГ), то реакция есть, но частичная. Для людей же с тимином вместо концевого цитозина в этом участке – ТЦТЦТ – лекарство токсично!

                                                                    Протеомика

   Эта совершенно новая отрасль биологии, изучающая структуру и функции белков и взаимосвязи между ними, названа по аналогии с геномикой, занимавшейся геномом человека. Само рождение протеомики уже объясняет, зачем нужна была программа «Геном человека». Поясним на примере перспективы нового направления.

   В далеком 1962 г. вместе с Уотсоном и Криком в Стокгольм были приглашены из Кембриджа Джон Кэндрью и Макс Перутц. Они были удостоены Нобелевской премии по химии за впервые осуществленную расшифровку трехмерной структуры белков миоглобина и гемоглобина, ответственных за перенос кислорода в мышцах и эритроцитах соответственно.

   Напомним, что даже в начале 1990-х гг. расшифровка структуры каждого нового белка представляла значительные трудности. Каждый анализ занимал до десятка лет. И хотя сейчас вместо рентгеновских лучей используют ядерно-магнитный резонанс (ЯМР), однако времени и денег на определение пространственной структуры каждого белка уходит очень много.

   Протеомика  позволяет ускорить и удешевить  эти работы. К.Вентер отметил, что  он 10 лет потратил на выделение и секвенирование гена адреналинового рецептора человека, теперь же его лаборатория тратит на это 15 с. Еще в середине 90-х гг. нахождение «адреса» гена в хромосомах занимало 5 лет, в конце 90-х – полгода, а в 2001 г. – одну неделю! Кстати, ускорению определения положения гена помогает информация о СНП, которых сегодня насчитываются уже миллионы.

   Вернемся  к протеомике. Знание аминокислотных последовательностей и трехмерной структуры определенных белков позволило  разработать программы сопоставления генетических последовательностей с аминокислотными, а затем программы предположительного расположения их в трехмерной структуре полипептидов. Знание трехмерной структуры позволяет быстро находить химические варианты молекул, в которых блокирован, например, активный центр, или определять положение активного центра у мутантного фермента.

   Известно, что повышение артериального  давления вызывается ферментом АСЕ, сокращенное название которого переводится  с английского как ангиотензин-конвертирующий фермент. Образующийся под действием фермента ангиотензин воздействует на стенки артерии, что и ведет к гипертонии. Уже относительно давно были найдены блокаторы фермента АСЕ, которые стали продаваться в качестве лекарств от повышенного давления. Однако, эти лекарственные средства оказались малоэффективными.

   Анализ  генома позволил выделить ген АСЕ-2, который кодирует более распространенный и эффективный вариант фермента. Затем была определена виртуальная  структура белкового продукта, после  чего подобраны химические вещества, активно связывающиеся с белком АСЕ-2. Так был найден новый препарат против артериального давления, причем за вдвое меньшее время и всего лишь за 200 вместо 500 млн долларов!

   Признаемся, что это был пример «догеномного»  периода. Теперь же, после прочтения генома, на первый план выходит протеомика, цель которой – быстрее разобраться с тем миллионом белков, которые потенциально могут существовать в наших клетках. Протеомика позволит более тщательно диагностировать генетические отклонения и блокировать неблагоприятное действие мутантных белков на клетку.

   А со временем можно будет планировать и  «исправление» генов.

                                                          Мнение экспертов

   Николай ЯНКОВСКИЙ, профессор, заведующий лабораторией анализа генома Института общей генетики РАН:

   – Расшифровка  структуры генома создает базис  для развития очень многих прикладных направлений в медицине. Если раньше, анализируя генетические причины какого-то заболевания, мы «открывали» своего рода мешок с обрывками, то теперь будем иметь четкую инструкцию, где что нужно искать. 12 лет назад, когда расшифровка генома начиналась, мы знали 100 заболеваний, которые вызываются «опечатками» одного гена, теперь знаем уже 1400, но это лишь 5 процентов от всего числа болезней. Остальные 95 процентов – мультифакторные заболевания, связанные с несколькими генами, но в их числе такие болезни, как диабет, рак, ишемическая болезнь сердца и т.п. Сейчас работы в этом направлении ведутся очень интенсивно. Эти знания позволят создать не только средства ранней диагностики, но и методы их коррекции.

   Лев КИСЕЛЕВ, академик РАН, заведующий лабораторией Института молекулярной биологии РАН:

   – Расшифровка  структуры генома – это точка  на первой странице в толстой книге, которую еще должно написать человечество. Начинается новый, третий этап в биологии: после дарвиновской, описательной, и молекулярной биологии последних 50 лет начинается биология функциональная, которая будет напрямую влиять на жизнь людей. А мы всех своих ученых-биологов молодого поколения подарили Америке. Если они не вернутся, наука в России закончится. Но пока все разговоры о том, что их надо вернуть, остаются разговорами. И дело не в том, что не хватает средств. Не хватает понимания места, которое наука занимает в жизни общества. Нелепыми мне кажутся разговоры о том, что мы сможем пользоваться чужими достижениями. Чтобы ими пользоваться, нужны квалифицированные люди, а их не будет.

                                                             Генная терапия

    Решающие  достижения молекулярной биологии и генетики в изучении тонкой структуры генов эукариот, их картировании на хромосомах млекопитающих, и прежде всего человека, впечатляющие успехи проекта "Геном человека" в идентификации и клонировании генов, мутации которых приводят к многочисленным наследственным болезням, и, наконец, бурный рост в области биотехнологии и генной инженерии явились необходимыми предпосылками для того, чтобы от опытов на животных и теоретических построений уже в 1989 году предпринять первые попытки лечения моногенных болезней.

    Что же такое генная терапия? Подразумевает  ли она лечение с помощью гена как лекарственного препарата или  только лечение путем коррекции  мутантного гена? Эти и многие другие вопросы неминуемо возникают  при рассмотрении такого многообещающего, а возможно, и потенциально опасного для человечества направления медицины грядущего XXI века, как генная терапия.

                                                  Краткая историческая справка.

    Генную  терапию на современном этапе  можно определить как лечение  наследственных, мультифакториальных и ненаследственных (инфекционных) заболеваний путем введения генов в клетки пациентов с целью направленного изменения генных дефектов или придания клеткам новых функций. Первые клинические испытания методов генной терапии были предприняты 22 мая 1989 года с целью генетического маркирования опухоль-инфильтрующих лимфоцитов в случае прогрессирующей меланомы. Первым моногенным наследственным заболеванием, в отношении которого были применены методы генной терапии, оказался наследственный иммуннодефицит, обусловленный мутацией в гене аденозиндезаминазы (ADA ). 14 сентября 1990 года в Бетесде (США) четырехлетней девочке, страдающей этим достаточно редким заболеванием (1 : 100 000), были пересажены ее собственные лимфоциты, предварительно трансформированные вне организма (ex vivo) геном ADA (ген ADA + ген neo + ретровирусный вектор). Лечебный эффект наблюдался в течение нескольких месяцев, после чего процедура была повторена с интервалом 3-5 месяцев. За три года терапии в общей сложности проведены 23 внутривенные трансфузии ADA-трансформированных Т-лимфоцитов без видимых неблагоприятных эффектов. В результате лечения состояние пациентки настолько улучшилось, что она смогла вести нормальный образ жизни и не бояться случайных инфекций. Столь же успешным оказалось и лечение второй пациентки с этим заболеванием. В настоящее время клинические испытания генной терапии этого заболевания проводятся в Италии, Франции, Великобритании и Японии.

    В 1997 году число допущенных к клиническим  испытаниям протоколов уже составляло 175, более 2000 пациентов приняли участие в их реализации. Большинство таких проектов (около 80%) касаются лечения онкологических заболеваний, а также ВИЧ-инфекции (СПИДа). Вместе с тем и в современных исследованиях по генной терапии необходимо учитывать, что последствия манипулирования генами или рекомбинантными ДНК in vivo изучены недостаточно.

    В странах с наиболее продвинутым  уровнем исследований в этой области, особенно в США, медицинские протоколы  с использованием смысловых последовательностей ДНК подвергаются обязательной экспертизе в соответствующих комитетах и комиссиях. В США таковыми являются Консультативный комитет по рекомбинантным ДНК (Recombinant DNA Advisory Committee, RAC) и Управление по лекарствам и пищевым продуктам (Food and Drug Administration, FDA) с последующим обязательным утверждением проекта директором Национальных институтов здоровья (National Institutes of Health). В Европе такие протоколы составляют и утверждают в соответствии с рекомендациями Европейской рабочей группы по переносу генов и генной терапии (European Working Group on Human Gene Transfer and Therapy).

                                   Методы генетической трансфекции  в генной терапии.

    Решающим  условием успешной генотерапии является обеспечение эффективной доставки, то есть трансфекции (в широком смысле) или трансдукции (при использовании вирусных векторов) чужеродного гена в клетки-мишени, обеспечение длительного функционирования его в этих клетках и создание условий для полноценной работы гена (его экспрессии). Трансфекция может проводиться с использованием чистой ("голой" - naked) ДНК, легированной (встроенной) в соответствующую плазмиду, или комплексированной ДНК (плазмидная ДНК, соединенная с солями, белками (трансферрин), органическими полимерами (DEAE-декстран, полилизин, липосомами или частицами золота), или ДНК в составе вирусных частиц, предварительно лишенных способности к репликации.

    Основные  методы доставки чужеродных генов в  клетки разделяются на химические, физические и биологические. Эффективность трансфекции и интеграционная способность трансдуцированной чужеродной ДНК при различных способах трансфекции в ДНК-клетки мишени. Только вирусные векторы или генетические конструкции, включающие вирусные последовательности, способны к активной трансдукции, а в некоторых случаях и к длительной экспрессии чужеродных генов. Из более 175 уже одобренных протоколов клинических испытаний по генотерапии более 120 предполагают использовать вирусную трансдукцию и около 100 из них основаны на применении ретровирусных векторов.

    Обзор данных позволяет прийти к заключению, что, несмотря на усилия многих лабораторий  мира, все уже известные и испытанные in vivo и in vitro векторные системы далеки от совершенства. Если проблема доставки чужеродной ДНК in vitro практически решена, а ее доставка в клетки-мишени разных тканей in vivo успешно решается (главным образом путем создания конструкций, несущих рецепторные белки, в том числе и антигены, специфичные для тех или иных тканей), то другие характеристики существующих векторных систем - стабильность интеграции, регулируемая экспрессия, безопасность - все еще нуждаются в серьезных доработках.

    Прежде  всего это касается стабильности интеграции. До настоящего времени  интеграция в геном достигалась  только при использовании ретровирусных либо аденоассоциированных векторов. Повысить эффективность стабильной интеграции можно путем совершенствования генных конструкций типа рецептор-опосредованных систем либо путем создания достаточно стабильных эписомных векторов (то есть ДНК-структур, способных к длительной персистенции внутри ядер). В последнее время особое внимание уделяется созданию векторов на базе искусственных хромосом млекопитающих (Mammalian Artificial Chromosomes). Благодаря наличию основных структурных элементов обычных хромосом такие мини-хромосомы длительно удерживаются в клетках и способны нести полноразмерные (геномные) гены и их естественные регуляторные элементы, которые необходимы для правильной работы гена, в нужной ткани и в должное время.

Информация о работе Геном человека. Генная терапия