Генная терапия, виды, основные проблемы и перспективы

Автор работы: Пользователь скрыл имя, 12 Января 2012 в 21:28, курсовая работа

Краткое описание

Существует тяжёлое заболевание – гиперхолестеринемия. Причиной его является недостаток или дефект генов ЛПНП-рецептора – мелких структур на поверхности клеток печени, "вытягивающих" липопротеиды низкой плотности (ЛПНП), вредные для здоровья человека, из крови и ответственных за их разрушение и ответственных за их разрушение в печени. Джеймс Вильсон, бывший исследователь из Медицинской школы Мичиганского университета в Энн-Арбор, сделал попытку внедрить копии нормального гена ЛПНП-рецептора пациенту.

Содержание

1. Введение.....................................................................................3
2. Генная терапия............................................................................4
3. Историческая справка................................................................6
4. методы генотической трансфекции в генной терапии...............8
4.1. РЕТРОВИРУСЫ....................................................................10
4.2. АДЕНОВИРУСЫ...................................................................11
5. Искусственные транспортнные средства...................................12
5.1. ПОЛИМЕРЫ..........................................................................12
5.2. ЛИПОСОМЫ.........................................................................12
6. Механизмы липофекции.............................................................14
6.1. ДОСТАВКА ДНК К ПОВЕРХНОСТИ КЛЕТОК.................14
6.2. Взаимодействие комплексов с клеточной поверхностью и проникнование в цитоплазму.................................................14
6.3. Освобождение ДНК в цитоплазу и транспорт в ядро...........15
7. Моральные проблемы генной терапии.......................................20
8. Заключение..................................................................................22
9. Список литературы.....................................................................25

Прикрепленные файлы: 1 файл

раид.doc

— 122.50 Кб (Скачать документ)
y">    Если проблема доставки чужеродной ДНК in vitro практически решена, а её доставка в клетки-мишени разных тканей in vivo успешно решается, то другие характеристики существующих векторных систем-стабильность интеграции, регулируемая экспрессия, безопасность-всё ещё нуждаются в серьёзных доработках.

  Повысить эффективность стабильной интеграции можно :

  • путём совершенствования генных конструкций типа рецептор-опосредованных систем;
  • путём создания достаточно стабильных эписомных векторов (то есть ДНК-структур, способных к длительной персистенции внутри ядер).

   В последнее время особое внимание уделяется созданию векторов на базе искусственных хромосом млекопитающих. Благодаря наличию основных структурных элементов такие мини-хромосомы длительно удерживаются в клетках и способны нести полноразмерные (геномные) гены и их естественные регуляторные элементы, которые необходимы для правильной работы гена, в нужной ткани и в должное время.

Теперь  остановимся подробнее  на некоторых методах.

Вирусы  в качестве средств доставки генетического  материала.

Большинство используемых вирусов получены от диких  штаммов, обладающих различной степенью патогенности, но утративших патогенные свойства благодаря удалению генов, ответственных за размножение и (или) сборку вирусных частиц. В клинической практике обычно используются ретровирусы и аденовирусы.

    1. РЕТРОВИРУСЫ – это РНК-содержащие вирусы, репликация которых осуществляется через ДНК интермедиата. Генетическая информация вирусной частицы, полезный объём которой может составлять 9000 пар оснований, непосредственно внедряется в геном клетки-хозяина.

   Большинство ретровирусов эффективны только для делящихся клеток. Эти вирусы не применимы для клеток мышечной или нервной ткани, клеток печени и легких. Исключение составляют векторы лентивирусов. К их числу относятся вирусы ВИЧ-инфекции, которые также могут использоваться в генной терапии.

    1. АДЕНОВИРУСЫ – имеют двухцепочечную ДНК и обычно позволяют доставлять существенно больший объём полезной генетической информации. Аденовирусы не внедряются в геном хозяйских клеток, и в процессе деления информация элиминируется. Эти вирусы эффективны при трансфекции, особенно в отношении клеток дыхательных путей, где может быть достигнута более чем 50%-я трансфекция, что на порядок выше, чем в случае ретровирусов.

Недостатки  использования вирусов:

- инициация иммунного ответа на введение инородного белка

- реактогенность самих вирусных препаратов

- часто – отсутствие тканевой специфичности

- трудности и дороговизна массового производства

- риск опухолеродных мутаций вируса или рекомбинации активных патогенных частиц  
 
 
 
 

  1. Искусственные транспортные средства.
    1. ПОЛИМЕРЫ.

    Полимерные молекулы, несущие избыточный катионный заряд, могут существенно повысить эффективность трансфекции.

Определённой  активностью обладают даже небольшие  молекулы (протамин, диметилсульфоксид, производные имидазола, грамицидин, липополиамин).

    Большую активность обычно проявляют синтетические полимеры (полиэтиленимин, полилизин, липополилизин или его конъюгаты с трансферрином, асиалоорозомукоидом, неогликопротеином, галактозой, маннозой), а также природные катионные белки (гистон Н1, галактозилированный гистон Н1, гистон Н4 в комплексе с ДНК и конъюгатом трансферрин-полилизин).

   Высокая эффективность богатых лизином пептидов и белков может быть обусловлена их сходством со специфическими сигнальными последовательностями, ответственными за транспорт из цитоплазмы в ядро. Полисахариды и белковые лиганды, входящие в состав перечисленных выше комплексов, определяют их сродство со специфическими рецепторами на поверхности клеток.

   Процессы взаимодействия таких комплексов с клетками имеет сходство с проникновением в клетку вирусных частиц.

    1. ЛИПОСОМЫ.

   Обычно используются ДНК-липидные комплексы, содержащие плазмиду с "экспрессированной" кассетой.

   Преимущества ДНК-липидных комплексов по сравнению с вирусными векторами:

  1. могут нести больший объём генетической информации;
  2. не могут приобретать инфекционных свойств вследствие рекомбинации;
  3. имеют более низкую вероятность инициации иммунного ответа или воспалительной реакции;
  4. простота и дешевизна приготовления.

   Особенно перспективным представляется использование фосфолипидов, например, кардиолипина и фосфатидилэтаноламина, образующих наряду с бислойными мембранами также инвертированные мицеллярные структуры, известные как кубические и гексагональные фазы, что определяет способность этих липидов инициировать слияние мембран. В присутствии катионов кальция или магния взаимодействие ДНК с фосфолипидами становится более прочным, липосомы агрегируют, и ДНК интернализуется во внутренний объём везикул. Использование высокомолекулярных катионных посредников, обеспечивающих формирование комплексов ДНК с фосфолипидами и взаимодействие этих комплексов с поверхностью клеток, потенциально могло бы улучшить их эффективность в трансфекции.

    Революцией явилось введение в практику первого низкотоксичного катионного липида ДОТМА (1,2-диолеил-3-N,N,N-триметиламинопропан), синтезированного Фелгнером с соавторами. Одновременно был введён в практику новый термин "липофекция", подчёркивающий высокую эффективность генетической трансформации клеток, приближающую липосомальные препараты к инфекционным вирусным частицам.

   При введении в ткани "обнажённой" ДНК обычно экспрессировалась только одна молекула из нескольких миллионов, а ДОТМА увеличивал этот параметр примерно в 1000 раз.

  1. МЕХАНИЗМЫ ЛИПОФЕКЦИИ.
    1. ДОСТАВКА ДНК К ПОВЕРХНОСТИ КЛЕТОК;

    ПРОБЛЕМА: ряд высокоэффективных катионных липидов инактивируется в присутствии даже незначительных количеств плазмы крови; некоторые органы имеют эндотелиальный барьер, препятствующий проникновению липосом.

   ВОЗМОЖНЫЕ РЕШЕНИЯ:

  • Использование высокополимерных молекул (полиэтиленгликоля, например) на поверхности липосомы, что существенно увеличивает время циркуляции липосом в русле крови, делая их недоступными (невидимыми) для преципитации иммуноглобулинами.
  • Для более направленной доставки поверхность липосом может нести антитела к клеткам-мишеням
  • Могут быть использованы специфические клеточные рецепторы, например, рецепторы фолата, являющегося маркером опухолевых клеток.
  • Могут использоваться вирусные белки слияния на поверхности липосом, что позволяет эффективно впрыскивать ДНК в цитоплазму (искусственные вирусы).
 
    1. ВЗАИМОДЕЙСТВИЕ  КОМПЛЕКСОВ С КЛЕТОЧНОЙ  ПОВЕРХНОСТЬЮ И ПРОНИКНОВЕНИЕ  В ЦИТОПЛАЗМУ;

    Природа механизма проникновения ДНК в цитоплазму до сих пор окончательно не исследована.

    Слияние липосом с плазматической мембраной на поверхности клетки, в результате чего внутреннее содержимое липосомы может попадать в цитоплазму, является наиболее простым и на первый взгляд очевидным механизмом транслокации ДНК.

    Однако имеются серьёзные аргументы в пользу того, что проникновение ДНК в цитоплазму происходит на значительно более поздних этапах, когда большая часть липосом интернализуется в цитоплазму.

   Этот процесс внешне напоминает эндоцитоз, так как в местах сорбции катионных везикул на поверхность клетки происходит инвагинация плазматической мембраны и отпочковывание внутрь цитоплазмы мембранного пузырька с катионными липосомами или ДНК-липидным комплексом во внутреннем пространстве. Инвагинация плазматической мембраны под воздействием сорбирующихся на её поверхности катионных липосом, очевидно, не требует специализированного механизма, так как наблюдается даже на поверхности эритроцитов.

    1. ОСВОБОЖДЕНИЕ ДНК В ЦИТОПЛАЗМУ И ТРАНСПОРТ В ЯДРО.

    Большие массы эндоцитированного материала накапливаются в областях, примыкающих к ядру. Скопление большого количества материала в околонуклеарном пространстве свидетельствует о том, что именно этап освобождения ДНК из эндосом может быть фактором, лимитирующим эффективность трансфекции.

   Обычно эндосомы с захваченными внутри частицами, включая вирусы, трансформируются в лизосомы, с мембраной которых и происходит слияние вирусных частиц при низком рН. Напротив, в случае липофекции ингибирование функционирования лизосом за счёт увеличения рН хлористым аммонием или хлорохином повышало эффективность трансфекции в несколько раз. Освобождение ДНК в цитоплазму, по всей видимости, происходит из эндосом, минуя стадию образования лизосом. Более того, катионные липиды препятствуют попаданию ДНК в лизосомы.

    Существует гипотеза, что, механизм освобождения ДНК основан на обмене липидами между катионной липосомой и мембранами клетки, в результате чего катионный заряд нейтрализуется, и связь ДНК с липосомой ослабевает.

    При слиянии комплекса ДНК-катионный липид с мембранами анионного липида происходит фазовый переход в структуре комплекса, конечным этапом которого является распад комплекса на отдельные компоненты, состоящие из молекул ДНК, окружённых трубчатыми бислойными структурами липидов.

    Одной из возможных причин низкой эффективности трансфекции может быть то, что ДНК даже после освобождения из липосомы продолжает удерживать большое количество адсорбированного катионного липида.

    После освобождения в цитоплазму дальнейшее продвижение ДНК к ядру, возможно, происходит с использованием мало изученных механизмов клеточного транспорта. Возможно, что катионные липосомы способны освобождать ДНК непосредственно в ядро.

Однако  липофекция эффективна только на прикреплённых  культурах клеток. Комплексы в  значительной степени теряют активность при взаимодействии с плазмой крови и имеют весьма ограниченное применение in vivo.

  1. ГЕНОТЕРАПИЯ РАЗЛИЧНЫХ ЗАБОЛЕВАНИЙ
    1. Моногенные наследственные заболевания.

   Наследственные заболевания, генокоррекция которых находится на стадии клинических испытаний (КИ), экспериментальных разработок (ЭК) и принципиально возможна (ПВ).

   Стадия клинических испытаний: иммунодефицит, гемофилия В, болезнь Гоше, муковисцидоз.

  Стадия экспериментальных разработок: гемофилия А, эмфизема лёгких, фенилкетонурия, мышечная дистрофия Дюшенна, талассемия, серповидноклеточная анемия, болезнь Альцгеймера, болезнь Паркинсона, хронический грануломатоз, респираторный дистресс-синдром.

       ПРИМЕР: Некоторые нарушения работы головного мозга (в частности, болезни Паркинсона и Альцгеймера) связаны с повреждением клеток, вырабатывающих нейромедиаторы. В результате мозг не может нормально регулировать двигательную деятельность человека.

   Такие болезни лечат препаратами медиаторной природы, однако, со временем организм утрачивает чувствительность к ним. Кроме того, они могут оказывать неблагоприятное побочное действие.

В последнее  время пытались лечить паркинсонизм пересадкой тканей, способных продуцировать  нейромедиаторы. Трансплантатом может  быть ткань мозга человеческих эмбрионов  или мозгового слоя надпочечников самого больного. Но при использовании чужеродных тканей возникают проблемы тканевой несовместимости, а также юридические и этические. Помимо этого такие операции далеко не всегда приводят к хорошим результатам.

    Ф. Гейдж с соавторами (Калифорнийский университет, Сан-Диего, США) в экспериментах на крысах использовал генную инженерию для борьбы с болезнями нервной системы. У животных забирали клетки кожи и вводили в них вирус, содержащий ген, кодирующий фермент тирозингидроксилазу. Фермент катализирует превращение аминокислоты тирозина в нейромедиатор L-ДОФА. Клетки со встроенным геном имплантировали в мозг крыс с предварительно разрушенным участком мозга, у которых наблюдались нарушения работы ЦНС, подобные болезни Паркинсона у человека. После пересадки модифицированных клеток у 40% животных состояние улучшилось. Авторы считают, что использование для пересадки собственных клеток реципиента перспективно для лечения больных     паркинсонизмом.

Информация о работе Генная терапия, виды, основные проблемы и перспективы