Физико-химические свойства белков и их определение

Автор работы: Пользователь скрыл имя, 07 Июня 2015 в 23:29, реферат

Краткое описание

Белки играют наиважнейшую роль в процессах жизнедеятельности. Ни один из известных живых организмов не обходится без них. Белки служат питательными веществами, они регулируют обмен веществ, исполняя роль ферментов – катализаторов обмена веществ, способствуют переносу кислорода по всему организму и его поглощению, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения, участвуют в передаче генетической информации и т.д.

Содержание

Введение ………………………………………………………………………..…3
Физические свойства ……………………………………………………….……4
Биологические свойства ……………………………………………………..…..4
Химические свойства белков ………………………………………………...….5
Химический синтез и анализ белков ……………………………………………7
Определение первичной структуры белков………………………………...….. 9
Определение вторичной структуры белков …………………………………...11
Определение третичной и четвертичной структур белков…………………... 11
Денатурация белков …………………………………………………………….12
Выделение и очистка белков …………………………………………………..14
Белки в промышленности и медицине …………………………………….….15
Заключение ………………………………………………………………………17
Список использованной литературы …………………………………………..18

Прикрепленные файлы: 1 файл

биохимия семестровая.docx

— 381.60 Кб (Скачать документ)

 

Определение вторичной структуры белков

Для определения вторичной структуры белков используются в основном оптические методы. Конечно, более надежным является рентгеноструктурный метод, однако его применение сопряжено с определенными трудностями и требует значительного времени. Такие оптические методы, как дисперсия оптического вращения и круговой дихроизм, являются более простыми и, что весьма важно, позволяют определять изменения вторичной структуры белка в растворах. При помощи дисперсии оптического вращения можно получить информацию о степени спирализации белковой макромолекулы. Несмотря на то, что метод является приближенным, достаточно отчетливо просматриваются переходы типа спираль—клубок. Что касается метода кругового дихроизма, то его спектр определяется набором углов ψ и φ, свойственных тому или иному типу вторичной структуры. Оба метода можно расценивать как скриннинговые, и для полной идентификации вторичной структуры их надо комбинировать с рентгеноструктурным анализом белков.

 

Определение третичной и четвертичной структур белков

Третичная и четвертичная структуры белков определяются при помощи рентгеноструктурного анализа, который впервые был проведен применительно к миоглобину и гемоглобину Дж. Кендрью и М. Перутцем в Кембридже. Значение рентгеноструктурного анализа белков трудно переоценить, так как именно этот метод дал возможность впервые получить своеобразную фотографию белковой молекулы. Для получения информативной рентгенограммы необходимо было иметь полноценный кристалл белка с включенными в него атомами тяжелых металлов, так как последние рассеивают рентгеновские лучи сильнее атомов белка и изменяют интенсивность дифрагированных лучей. Таким образом можно определить фазу дифрагированных на белковом кристалле лучей и затем электронную плотность белковой молекулы. Это впервые удалось сделать М. Перутцу в 1954 г., что явилось предпосылкой для построения приближенной модели молекулы белка, которая затем была уточнена при помощи ЭВМ. Однако первым белком, пространственная структура которого была полностью идентифицирована Дж. Кендрью, оказался миоглобин, состоящий из 153 аминокислотных остатков, образующих одну полипептидную цепь. В результате было экспериментально подтверждено предположение Л. Полинга и Р. Кори о наличии в молекуле миоглобина α-спиральных участков, а также М. Перутца и Л. Брэгга о том, что они имеют цилиндрическую форму. Несколько позднее М. Перутцем была расшифрована структура гемоглобина, состоящая из 574 аминокислотных остатков и содержащая около 10 000 атомов. В отличие от миоглобина гемоглобин имеет четвертичную структуру, включающую в себя четыре глобулы: две α-субъединицы и две β-субъединицы [1].

 

Денатурация белков

Под денатурацией понимают изменение пространственной структуры белков и, как следствие, уменьшение или полное подавление функциональной активности, растворимости и других биологических и физико-химических свойств. Следует различать денатурацию и деградацию белков. При деградации происходит фрагментация первичной структуры и образование фрагментов белковой макромолекулы. Денатурация не сопровождается фрагментацией, однако может происходить разрыв дисульфидных мостиков, а также слабых водородных, гидрофобных и электростатических связей. В результате изменениям подвергается четвертичная (при ее наличии), третичная и в меньшей степени вторичная структуры.

Денатурирующие агенты делятся на химические и физические. К последним относится прежде всего температурное воздействие, в частности замораживание или нагревание, а также давление, ультразвуковое воздействие, облучение и др. Химические агенты — это органические растворители (ацетон, хлороформ, спирт), концентрированные кислоты, щелочи, ионы тяжелых металлов. В лабораторной практике в качестве денатурирующих агентов чаще всего используют мочевину или гуанидинхлорид, легко разрывающие водородные и гидрофобные связи, при помощи которых формируется третичная структура белка. Максимальное денатурирующее действие оба реагента проявляют при высоких концентрациях (8—10 моль/л). Тепловая денатурация белков в растворах при 50—60 °С также связана с разрывом связей, при помощи которых образуется третичная структура. Денатурация, осуществляемая в мягких условиях, часто оказывается обратимой, т. е. при удалении денатурирующего агента происходит восстановление нативной конформации белковой молекулы. Для ряда белков восстановление связей может быть 100%-м, причем это касается не только водородных или гидрофобных связей, но и дисульфидных мостиков. Денатурация изменяет как стабильность, так и функции белков, поэтому весьма важно определять ее характер в научных экспериментах, а также при применении белков в промышленности и медицине. Как правило, при денатурации изменяется форма белковой молекулы, поэтому для контроля ее нативности применяют такие методы, как коэффициент вращательной диффузии, рассеяние света, электронная микроскопия. Кроме того, при переходе молекулы белка в денатурированную форму меняется ее растворимость, спектры поглощения, иммунохимические свойства [5].

 

 

 

Выделение и очистка белков

Для изучения структур и функций белков требуется выделение и очистка их с минимальным количеством примесей, а в идеале — до гомогенного состояния. Связи, поддерживающие высшие структуры белковых макромолекул, легко разрываются, число гидрофобных и гидрофильных группировок на поверхности белковых глобул изменяется, что сказывается в первую очередь на их растворимости. Для выделения белков из клеток последние разрушаются, причем если для деградации цитоплазматических мембран животных клеток достаточно применения гомогенизаторов, то разрушение клеточных стенок растительных и особенно микробных клеток требует больших усилий (ультразвук, шаровые мельницы и т. д.). После удаления остатков клеточных структур при помощи диализа освобождаются от различных малых молекул. Затем последовательно используются различные методы фракционирования.

Высаливание. Высокие концентрации сульфата аммония, а также солей щелочных металлов осаждают белки. Механизм осаждения связан со способностью солей разрушать гидратную оболочку растворенных белковых макромолекул, что приводит к их агрегации и последующему осаждению. Далее используют ряд методов концентрирования и тонкой очистки белков, причем наиболее эффективными являются различные хроматографические процедуры. К преимуществам хроматографических методов следует отнести: 1. технологическую гибкость — разделение веществ можно осуществлять при реализации различных типов межмолекулярных взаимодействий сорбент—сорбат;

2. динамичность, т. е. большое преимущество перед такими одноактными методами, как экстракция и осаждение. Концентрирование продукта в этом случае состоит в селективности взаимодействия хроматографического носителя с целевым веществом, содержащимся в многокомпонентной смеси; 3. вещества в процессе хроматографического разделения, как правило, не подвергаются химическим изменениям [2].

 

Белки в промышленности и медицине

В последние годы белки растительного происхождения все в большей степени используют для питания не только животных, но и человека. Прямое потребление человеком растительных белков касается в первую очередь зерновых культур, бобовых, а также различных других овощей. Выделение высокоочищенных белков (изолятов) происходит в несколько стадий. На первой стадии белки избирательно переводятся в растворимое состояние. Эффективность разделения твердой (примеси) и жидкой (белки) фаз является залогом получения в дальнейшем высокоочищенного продукта. В большинстве случаев белки из растительных источников являются альбуминами или глобулинами, причем глобулины растворимы в слабых солевых растворах, а альбумины — еще и в чистой воде. Белковый экстракт содержит много сопутствующих растворимых продуктов, поэтому на второй стадии белки отделяют осаждением или, используя различия в размерах или в электрическом заряде, применяют мембранную технологию, а также другие приемы (электродиализ, ионообменные смолы, молекулярные сита и др.). Когда оптимальные условия растворимости белков определены, выбор конкретного технологического процесса зависит от вида сырья и целевого продукта.

Производство белковых продуктов методом микробиологического синтеза имеет многовековую историю. Следует отметить, что питательные свойства микробной биомассы во многом определяются белками, составляющими большую часть сухой массы клеток. Микробные белки привлекают внимание биотехнологов в качестве пищевых продуктов в связи с дешевизной и быстротой их получения по сравнению с животными и растительными белками. Промышленное получение белка из микробных клеток осуществляется методом глубинного, непрерывного культивирования. Существенным недостатком этой технологии является наличие в конечном продукте примесей микробных клеток, количество и токсичность которых должно строго учитываться. Наличие нежелательных примесей при производстве микробного белка привело к тому, что в основном он используется в качестве корма для сельскохозяйственных животных. Белки и продукты их деградации применяются в медицине в качестве лекарственных веществ и лечебных пищевых добавок [3].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение

В результате изучения данной темы можно сделать вывод, что физические и химические свойства белков разнообразны, что обусловлено их сложной структурой.

Методы анализа белковых макромолекул селективны и осуществляются в зависимости от того, какая структура является объектом исследования, и начинаются с определения аминокислотного состава.

Под денатурацией понимают изменение пространственной структуры белков и, как следствие, уменьшение или полное подавление функциональной активности, растворимости и других биологических и физико-химических свойств.

В белках основной вклад в формирование кислотно-основных свойств вносят заряженные радикалы аминокислотных остатков, расположенные на поверхности белковой глобулы. Основные свойства белков связаны с такими аминокислотами, как аргинин, лизин или гистидин, а кислые — с аспарагиновой и глутаминовой аминокислотами.

Белки, будучи амфотерными электролитами, проявляют буферные свойства, хотя их буферная емкость в большинстве случаев незначительна. Исключение составляют белки, содержащие большое число остатков гистидина.

В растворах белки проявляют коллоидные свойства, такие, как явление светорассеяния (эффект Тиндаля), неспособность проходить через полупроницаемые мембраны, высокая вязкость, образование гелей и др. Вместе с тем белки не являются истинными коллоидами, так как они способны образовывать молекулярные растворы. Основное сходство между коллоидными частицами и белками заключается в том, что они имеют более или менее близкие размеры. Белки так же, как и истинные коллоиды, могут образовывать гели, представляющие собой сетчатые структуры, заполненные водой. 
Список использованной литературы

  1. Комов, В. П.. Биохимия : учеб. для вузов / В. П. Комов, В. Н. Шведова. — 2-е изд., испр. — М. : Дрофа, 2006. – 638 с.
  2. Овчинников, Ю.А. Биоорганическая химия / Ю. А. Овчинников.  – М. : Просвещение, 1987. – 815 с.
  3. Петров А.А, Бальян Х.В., Трощенко А.Т. Органическая химия: Учебник для вузов. – СПб.: «Иван Федоров», 2002. – 624 с.
  4. Тюкавкина, Н.А. Биоорганическая химия /  Н. А. Тюкавкина, Ю. И. Бауков. – М.: Медицина, 1991. – 528 с.
  5. Филиппович. Ю.Б., Ковалевская Н.И., Севастьянова Г.А. и др. Биологическая химия: Учеб. пособие для ступ. высш. учеб., др.: Под ред. Н.И.Ковалевской. — М.: «Академия», 2005. – 256 с

 

 

 

 

 

 

 


Информация о работе Физико-химические свойства белков и их определение