Физико-химические свойства белков и их определение

Автор работы: Пользователь скрыл имя, 07 Июня 2015 в 23:29, реферат

Краткое описание

Белки играют наиважнейшую роль в процессах жизнедеятельности. Ни один из известных живых организмов не обходится без них. Белки служат питательными веществами, они регулируют обмен веществ, исполняя роль ферментов – катализаторов обмена веществ, способствуют переносу кислорода по всему организму и его поглощению, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения, участвуют в передаче генетической информации и т.д.

Содержание

Введение ………………………………………………………………………..…3
Физические свойства ……………………………………………………….……4
Биологические свойства ……………………………………………………..…..4
Химические свойства белков ………………………………………………...….5
Химический синтез и анализ белков ……………………………………………7
Определение первичной структуры белков………………………………...….. 9
Определение вторичной структуры белков …………………………………...11
Определение третичной и четвертичной структур белков…………………... 11
Денатурация белков …………………………………………………………….12
Выделение и очистка белков …………………………………………………..14
Белки в промышленности и медицине …………………………………….….15
Заключение ………………………………………………………………………17
Список использованной литературы …………………………………………..18

Прикрепленные файлы: 1 файл

биохимия семестровая.docx

— 381.60 Кб (Скачать документ)

Министерство образования и науки РФ

ФГБОУ ВПО «Волгоградский государственный технический университет»

 

 

Кафедра «Органическая химия»

 

 

 

 

 

 

 

 

 

 

 

 

СЕМЕСТРОВАЯ РАБОТА

по биохимии на тему:

«Физико-химические свойства белков и их определение»

 

 

 

 

 

 

 

 

 

 

 

Выполнила:

ст. группы ПП-352

Ешева Аида

Проверила: доцент

Кутыга Ольга Николаевна

 

 

 

Волгоград 2013

Содержание

Введение ………………………………………………………………………..…3

Физические свойства ……………………………………………………….……4

Биологические свойства ……………………………………………………..…..4

Химические свойства белков ………………………………………………...….5

Химический синтез и анализ белков ……………………………………………7

Определение первичной структуры белков………………………………...….. 9

Определение вторичной структуры белков …………………………………...11

Определение третичной и четвертичной структур белков…………………... 11

Денатурация белков …………………………………………………………….12

Выделение и очистка белков …………………………………………………..14

Белки в промышленности и медицине …………………………………….….15

Заключение ………………………………………………………………………17

Список использованной литературы …………………………………………..18 
Введение

Белки представляют собой высокомолекулярные органические соединения, построенные из остатков α-аминокислот, соединенных между собой пептидными связями.

Белки играют наиважнейшую роль в процессах жизнедеятельности. Ни один из известных живых организмов не обходится без них. Белки служат питательными веществами, они регулируют обмен веществ, исполняя роль ферментов – катализаторов обмена веществ, способствуют переносу кислорода по всему организму и его поглощению, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения, участвуют в передаче генетической информации и т.д.

Известно, что аминокислоты, соединяясь друг с другом посредством пептидных связей, образуют полипептиды. Белками являются полипептиды, способные образовывать и самостоятельно стабилизировать свою пространственную структуру. Как правило, белками называют полипептиды, которые содержат более 50 аминокислотных остатков.

Различают химические, физические и биологические свойства белков.

Химические свойства отличаются исключительным разнообразием. Некоторые из радикалов аминокислот содержат свободные минные (лизин, аргинин) и карбоксильные (аспарагиновая и глутаминовая кислоты) группы. Взаимодействуя с окружающими молекулами растворителя (воды), ионогенные группы ионизируются, образуя катионные и анионные центры молекулы белка.

Целью данной семестровой работы является изучение химических и физических свойств белков. Поставленная цель решается посредством следующих задач:

- рассмотрение основных физических свойств белков;

- изучение характеристики их химических свойств.

 

Физические свойства

Особо следует отметить подвижность белковых молекул в электрическом поле, их оптическую активность, способность рассеивать свет (ввиду значительных размеров белковых частиц) и поглощать ультрафиолетовое излучение. Перечисленные оптические свойства белков используют при их фракционировании, количественном определении, измерении молекулярной массы и т.п.

Одним из характерных физических свойств белков является их способность адсорбировать на своей поверхности (а иногда и захватывать внутрь молекулы) низкомолекулярные органические соединения и ионы. С этим свойством белков связана их транспортная функция в организме: некоторые белки являются хорошими переносчиками продуктов обмена и токсических веществ [1].

 

Биологические свойства

В первую очередь следует отметить биокаталитическую (ферментативную) активность белков. Благодаря особому строению молекулы или наличию активных групп многие белки обладают способностью каталитически ускорять ход химических реакций. Это свойство белков играет важную роль в осуществлении процессов жизнедеятельности.

Другое важное биологическое свойство белков — их гормональная активность, т. е. способность воздействовать на целые группы химических реакций в организме. Некоторым белкам присущи также токсические свойства, патогенная активность, защитные функции в организме и т.п.

Важной является пластическая роль белков: в сочетании с другими макромолекулами они дают начало смешанным сополимерам — нуклеопротеинам, липопротеинам и гликопротеинам, которые в свою очередь обеспечивают возникновение субклеточных структур и надклеточных образований в организме.

Особым свойством белков является их способность к денатурации. Белки, обладающие всеми характерными природными свойствами, называют нативными. Часто под влиянием мягкой обработки (например, легкого встряхивания) или при резких физических или химических воздействиях (тепловой шок, стресс, отравление тяжелыми металлами) белки теряют нативность и переходят в денатурированное состояние. Изменение уникальной структуры нативного белка, сопровождающееся обратимой или необратимой потерей характерных для него свойств (растворимости, биологической активности, электрофоретической подвижности и т. п.) называют денатурацией. При обратимой денатурации, как правило, нарушаются четвертичная, третичная и частично вторичная структура белковой молекулы, но не происходит каких- либо изменений первичной структуры. В случае обратимой денатурации (в отличие от необратимой) при определенных условиях денатурированный белок можно частично или полностью вернуть к нативному состоянию, такой белок называют ренатурированным, а процесс — ренатурацией.

При необратимой денатурации белка (при кипячении, под действием ионов тяжелых металлов и других агентов) происходит глубокое нарушение структуры белка, в результате чего ренатурация его невозможна [2].

 

Химические свойства белков

Они отличаются исключительным разнообразием. Обладая аминокислотными радикалами различной химической природы, белковые тела способны вступать в разнообразные реакции. Некоторые из радикалов аминокислот содержат свободные аминные (лизин, аргинин) и карбоксильные (аспарагиновая и глутаминовая кислоты) группы. Взаимодействуя с окружающими молекулами растворителя (воды), ионогенные группы ионизируются, образуя катионные и анионные центры молекулы белка.

В зависимости от соотношения противоположно заряженных ионов белковая молекула получает суммарный положительный или отрицательный заряд. Для характеристики кислотно-основных свойств молекул белков и аминокислот используется такой показатель, как изоэлектрическая точка.

Изоэлектрическая точка белка (рI) — это значение рН среды, при котором молекула белка электронейтральна и не перемещается в электрическом поле.

Белки, как и аминокислоты, являясь амфотерными электролитами, могут диссоциировать как кислоты и как основания. Условно молекулу белка в растворе с равным числом ионизированных аминных и карбоксильных групп (вблизи изоэлектрической точки) можно представить следующим образом:

В кислой среде (рН < 7) происходит подавление диссоциации белка по карбоксильным группам, в этом случае молекула белка заряжается положительно:

В щелочной среде (рН > 7) подавляется диссоциация белка по аминогруппам, и молекула заряжается отрицательно:

Изоэлектрическая точка кислых белков (с повышенным содержанием дикарбоновых кислот) лежит в слабокислой области, изоэлектрическая точка основных белков (с повышенным содержанием диаминокислот) — в слабощелочной области.

В водном растворе белков их молекулы заряжены и гидратированы, что обусловливает устойчивость белковых растворов. Однако при высокой концентрации солей, ионы которых тоже гидратированы, происходит разрушение водных оболочек белковых молекул и нейтрализация их заряда адсорбирующимися противоионами соли. Белковые частицы слипаются и выпадают в осадок. Таков механизм высаливания белков, который используют для выделения отдельных белков из смеси [3].

 

 

Химический синтез и анализ белков

Синтез. Осуществление белкового синтеза химическим путем привлекало внимание многих исследователей. Метод твердофазного синтеза, разработанный Б. Меррифилдом, дал возможность получать достаточно большие полипептиды. Таким же способом был получен гормон инсулин, а его уже можно отнести к классу белков. В случае инсулина более трудной задачей было соединение двух полипептидных цепей в активную макромолекулу. К. Диксон и А. Уардлоу справились с этой задачей и положили основу химического синтеза белков. Однако несмотря на разработку автоматических синтезаторов, метод химического синтеза белков не получил широкого распространения из-за наличия большого числа технических ограничений. В природе небольшие полипептиды синтезируются с помощью соответствующих ферментов, основная же масса белков образуется посредством матричного синтеза.

Анализ. Методы анализа белковых макромолекул селективны и осуществляются в зависимости от того, какая структура является объектом исследования, и начинаются с определения аминокислотного состава. Для этого необходимо провести полный гидролиз пептидных связей и получить смесь, состоящую из отдельных аминокислот. Гидролиз проводят при помощи 6М соляной кислоты при кипячении в течение 24 ч. Так как для гидролиза пептидных связей изолейцина и валина этого может быть недостаточно, проводят контрольный 48- и 72- часовой гидролиз. Некоторые аминокислоты, например триптофан, при кислотном гидролизе разрушаются, поэтому для их идентификации используют гидролиз при помощи метансульфоновой кислоты в присутствии триптамина. Для определения цистеина белок окисляют надмуравьиной кислотой, при этом цистеин превращается в цистеиновую кислоту, которую затем анализируют. Выделение и идентификацию аминокислот проводят при помощи аминокислотных анализаторов, принцип действия которых основан на хроматографическом разделении белкового гидролизата на сульфополистирольных катионитах. В основе количественного определения той или иной аминокислоты лежит цветная реакция с нингидрином, однако более перспективным следует считать метод, при котором аминокислоты модифицируют в производные, поглощающие свет в видимом диапазоне. Разделение смеси аминокислот проводят при помощи высокоэффективной жидкостной хроматографии, а само определение — спектрофотометрически. Следующим этапом является определение концевых аминных и карбоксильных группировок в белковой макромолекуле. Это необходимо для того, чтобы знать, какой белок подвергается анализу — протомер или олигомер. Олигомерные белки предварительно обрабатывают надмуравьиной кислотой для разделения на отдельные полипептидные цепи. N-Концевую аминокислоту определяют при помощи динитрофторбензола, который реагирует с α-аминогруппой белка, образуя окрашенное в желтый цвет производное. Что касается С-концевых аминокислот, то их определение связано с применением ферментативного метода. В качестве фермента чаще всего используют карбоксипептидазу А, которая последовательно отщепляет от карбоксильного конца отдельные аминокислоты. Суть метода заключается в количественном определении накопления свободных аминокислот во времени [4].

 

Определение первичной структуры белков

Определению первичной структуры предшествует денатурация и разрыв поперечных дисульфидных связей в белке. Это достигается посредством избытка меркаптоэтанола.

Цистин превращается в два остатка цистеина, которые затем блокируют избытком иодуксусной кислоты, чтобы предотвратить обратное образование связей —S—S—.

Расщепление полипептидной цепи на фрагменты проводят обычно при помощи протеолитических ферментов, таких, как трипсин, химотрипсин или пепсин. Эти ферменты действуют на различные участки полипептидной цепи, так как имеют повышенное сродство к различным аминокислотным остаткам. Необходимо учитывать также соседние аминокислотные остатки, т.е. пространственное окружение атакуемой пептидной связи. Оказалось, что трипсин гидролизует только те пептидные связи, в образовании которых участвует карбоксильная группа лизина или аргинина, а химотрипсин гидролизует связи по фенилаланину, триптофану и тирозину. Обычно протеолитические ферменты, гидролизующие полипептидные цепи, предварительно иммобилизуют на нерастворимых матрицах для более легкого отделения их от продуктов гидролиза. Далее определяют аминокислотные последовательности каждого полипептидного фрагмента. Для этого чаще всего используют метод Эдмана, заключающийся в анализе полипептида только с N-конца. Концевая аминокислота при взаимодействии с фенилизотиоцианатом в щелочной среде образует стойкое соединение, которое можно отщепить от полипептида без его деградации. Фенилтиогидантоиновое (ФТГ) производное аминокислоты идентифицируется хроматографическим методом. После идентификации концевого N-аминокислотного остатка метка вводится в следующий аминокислотный остаток, который становится концевым. Метод Эдмана можно автоматизировать, пользуя секвенатор (от англ. sequetice - последовательность) с помощью которого ФТГ-производные отщепляются от полипептида и идентифицируются посредством высокоэффективной жидкостной хроматографии.

Ф. Сэнгер впервые полностью расшифровал первичную структуру белкового гормона инсулина, используя метод Эдмана.

Другим высокочувствительным методом является так называемый дансильный метод, связанный с присоединением к концевой аминокислоте дансилхлорида (1-диметиламино-нафталин-5-сульфохлорида) по следующей схеме:

 

Первичная структура белка может быть установлена косвенно следующим образом: сначала получают соответствующую кДНК., затем идентифицируют клон, относящийся к анализируемому белку, и по чередованию в нем нуклеотидов с использованием библиотеки аминокислотных последовательностей определяют первичную структуру белка.

Информация о работе Физико-химические свойства белков и их определение