Биологические мембраны

Автор работы: Пользователь скрыл имя, 18 Марта 2014 в 10:00, реферат

Краткое описание

Мембраны биологические (лат. membrana оболочка, перепонка) – это функционально активные поверхностные структуры толщиной в несколько молекулярных слоев, ограничивающие цитоплазму и большинство органелл клетки, а также образующие единую внутриклеточную систему канальцев, складок, замкнутых областей.
Биологические мембраны имеются во всех клетках. Их значение определяется важностью функций, которые они выполняют в процессе нормальной жизнедеятельности, а также многообразием заболеваний и патологических состояний, возникающих при различных нарушениях мембранных функций и проявляющихся практически на всех уровнях организации — от клетки и субклеточных систем до тканей, органов и организма в целом.

Содержание

Введение ………………………………………………………………………..3
1. Мембраны биологические …………………………………………….……3
2. Химический состав и строение биологических мембран ………….…..…5
2.1Липиды биологических мембран ……………………….…………..5
2.2 Белки биологических мембран ……………………………………..7
2.3 Углеводы биологических мембран …………………………...……8
3. Свойства (функции) биологических мембран ……………………………..9
3.1 Барьерная функция ……………………………………………….…9
3.2 Перенос веществ …………………………………………………….9
3.3 Способность генерировать биоэлектрические потенциалы и проводить возбуждение ………………………………….……… 12
3.4 Процессы трансформации и запасания энергии …………….…..13
3.5 Метаболические свойства мембран ……………………………....13
3.6 Клеточная рецепция и межклеточные взаимодействия …………14
4. Нарушения структуры и функций биологических мембран ……………14
Заключение ……………………………………………………………...…….16
Список использованных источников ………………………………..………17

Прикрепленные файлы: 1 файл

мембраны общий файл.doc

— 433.50 Кб (Скачать документ)

В ряде случаев перенос вещества совпадает с направлением градиента, но существенно превосходит по скорости простую диффузию.

Этот процесс называют облегченной диффузией; он происходит с участием белков-переносчиков. Процесс облегченной диффузии не нуждается в энергии. Этим способом транспортируются сахара, аминокислоты, азотистые основания. Такой процесс происходит, например, при всасывании сахаров из просвета кишечника клетками эпителия.

Перенос молекул и ионов против электрохимического градиента (активный транспорт) связан со значительными затратами энергии. Часто градиенты достигают больших величин. например, концентрационный градиент водородных ионов на плазматической мембране клеток слизистой оболочки желудка составляет 106, градиент концентрации ионов кальция на мембране саркоплазматического ретикулума — 104, при этом потоки ионов против градиента значительны. В результате затраты энергии на транспортные процессы достигают, например, у человека, более трети всей энергии метаболизма. В плазматических мембранах клеток различных органов обнаружены системы активного транспорта ионов натрия и калия — натриевый насос. Эта система перекачивает натрий из клетки и калий в клетку (антипорт) против их электрохимических градиентов. Перенос ионов осуществляется основным компонентом натриевого насоса — Na+, К+-зависимой АТФ-азой за счет гидролиза АТФ (аденозинтрифосфата).

На каждую гидролизующуюся молекулу АТФ транспортируется три иона натрия и два иона калия. Существуют два типа Са2+-АТФ-аз. Одна из них обеспечивает выброс ионов кальция из клетки в межклеточную среду, другая — аккумуляцию кальция из клеточного содержимого во внутриклеточное депо. Обе системы способны создавать значительный градиент иона кальция. К+, Н+-АТФ-аза обнаружена в слизистой оболочке желудка и кишечника. Она способна транспортировать Н+ через мембрану везикул слизистой оболочки при гидролизе АТФ. В микросомах слизистой оболочки желудка лягушки найдена аниончувствительная АТФ-аза, способная при гидролизе АТФ осуществлять антипорт бикарбоната и хлорида.

Изложенные механизмы транспорта различных веществ через клеточные мембраны имеют место и в случае их транспорта через эпителий ряда органов (кишечника, почек, легких), который осуществляется через слой клеток (монослой в кишечнике и нефронах), а не через единичную клеточную мембрану. Такой транспорт называют трансцеллюлярным, или трансэпителиальным. Характерной особенностью клеток, например эпителиоцитов кишечника и канальцев нефронов, является то, что апикальная и базальная их мембраны различаются по проницаемости, величине мембранного потенциала и транспортной функции.

 

3.3 Способность генерировать биоэлектрические потенциалы и проводить возбуждение

 

Возникновение биоэлектрических потенциалов связано с особенностями строения биологических мембран и с деятельностью их транспортных систем, создающих неравномерное распределение ионов по обе стороны мембраны.

Внутри клетки, находящейся в состоянии покоя, содержится ионов калия в 30 раз больше, чем во внеклеточной жидкости, натрия же во внеклеточной жидкости содержится в 20 раз больше, чем в клетке.

В соответствии с градиентом концентрации калий стремится выйти из клетки, натрий — войти в клетку. Полупроницаемая мембрана пропускает ионы калия, которые выходят из клетки и располагаются на внешней поверхности мембраны. На внутренней поверхности мембраны сосредоточиваются отрицательно заряженные ионы.

При возбуждении (деполяризации) мембрана становится проницаемой для ионов натрия, который устремляется внутрь клетки; внутренняя поверхность мембраны заряжается положительно, внешняя — отрицательно.

Накопление положительных ионов внутри клетки и освободившихся отрицательных ионов снаружи приведет к «обратной поляризации», наружная поверхность мембраны приобретает отрицательный заряд, внутренняя — положительный. Затем поток натрия внутрь клетки уменьшается, так как понижается проницаемость мембраны для натрия, выход ионов калия из клетки начинает превышать ток ионов натрия в клетку, наступает период реполяризации (восстановление исходной поляризации).

 

3.4 Процессы трансформации  и запасания энергии

 

Процессы трансформации и запасания энергии протекают в специализированных биологических мембранах и занимают центральное место в энергетическом обеспечении живых систем. Два основных процесса энергообразования — фотосинтез и тканевое дыхание — локализованы в мембранах внутриклеточных органелл высших организмов, а у бактерий — в клеточной (плазматической) мембране.

Фотосинтезирующие мембраны преобразуют энергию света в энергию химических соединений, запасая ее в форме сахаров — основного химического источника энергии для гетеротрофных организмов. При дыхании энергия органических субстратов освобождается в процессе переноса электронов по цепи окислительно-восстановительных переносчиков и утилизируется в процессе фосфорилирования АДФнеорганическим фосфатом с образованием АТФ.

Мембраны, осуществляющие фосфорилирование, сопряженное с дыханием, называют сопрягающими (внутренние мембраны митохондрий, клеточные мембраны некоторых аэробных бактерий, мембраны хроматофоров фотосинтезирующих бактерий).

 

3.5 Метаболические свойства мембран

 

Метаболические функции мембран определяются двумя факторами:

- во-первых, связью большого числа ферментов и ферментативных систем с мембранами;

- во-вторых, способностью мембран физически разделять клетку на отдельные отсеки, отграничивая друг от друга метаболические процессы, протекающие в них.

Метаболические системы не остаются при этом полностью изолированными. В мембранах, разделяющих клетку, имеются специальные системы, обеспечивающие избирательное поступление субстратов, выделение продуктов, а также движение соединений, обладающих регуляторным действием.

 

3.6 Клеточная рецепция  и межклеточные взаимодействия

 

Под этой формулировкой объединен весьма обширный и разнообразный набор важных функций клеточных мембран, определяющих взаимодействие клетки с окружающей средой и формирование многоклеточного организма как единого целого.

Под клеточной рецепцией понимают процесс восприятия и преобразования химического сигнала в сложную последовательность внутриклеточных химических процессов. Клеточная рецепция обеспечивает возможность обмена информации между клетками, который осуществляется при помощи биологически активных веществ (гормонов, медиаторов). Обязательным этапом такого межклеточного взаимодействия является связывание молекул вещества с соответствующей молекулой клетки-мишени, называемой клеточным рецептором. Роль клеточных рецепторов играют специфические белковые молекулы, которые могут быть расположены на поверхности клетки, в цитоплазме или в ядре.

Молекулярно-мембранные аспекты клеточной рецепции и межклеточных взаимодействий касаются прежде всего иммунных реакций, гормонального контроля роста и метаболизма, закономерностей эмбрионального развития.

 

4. Нарушения структуры и функции биологических мембран

 

 Разнообразие типов биологических мембран, их полифункциональность и высокая чувствительность к внешним условиям порождают необыкновенное разнообразие структурно-функциональных нарушений мембран, возникающих при многих неблагоприятных воздействиях и сопряженных с огромным числом конкретных заболеваний организма как целого. Все это разнообразие нарушений достаточно условно можно подразделить на:

- транспортные;

- функционально-метаболические;

- структурные.

В общем виде охарактеризовать последовательность возникновения этих нарушений не представляется возможным, и в каждом конкретном случае требуется детальный анализ для выяснения первичного звена в цепи развития структурно-функциональных нарушений мембран. Нарушение транспортных функций мембран, в частности увеличение проницаемости мембран, — общеизвестный универсальный признак повреждения клетки.

 Нарушением транспортных функций (например, у человека) обусловлено  более 20 так называемых транспортных  болезней, среди которых почечная глюкозурия, цистинурия, нарушение всасывания глюкозы, галактозы и витамина В12, наследственный сфероцитоз и др.

Среди функционально-метаболических нарушений биологических мембран центральными являются изменения процессов биосинтеза, а также многообразные отклонения в энергообеспечении живых систем. В наиболее общем виде следствием этих процессов является нарушение состава и физико-химических свойств мембран, выпадение отдельных звеньев метаболизма и его извращение, а также снижение уровня жизненно важных энергозависимых процессов (активного транспорта ионов, процессов сопряженного транспорта, функционирования сократительных систем и т.д.). Повреждения ультраструктурной организации биологических мембран выражаются в чрезмерном везикулообразовании, увеличении поверхности плазматических мембран за счет образования пузырей и отростков, слиянии разнородных клеточных мембран, образовании микропор и локальных структурных дефектов.

 

 

Заключение

 

В результате выполненной работы сделаны следующие выводы:

1. Мембраны биологические – это функционально активные поверхностные структуры толщиной в несколько молекулярных слоев, ограничивающие цитоплазму и большинство органелл клетки, они образуют единую внутриклеточную систему канальцев, складок, замкнутых областей.

2. В составе биологических мембран основными составляющими являются липиды и белки, присутствуют углеводы (небольшая, но чрезвычайно важная часть) и вода (более 20% общего веса).

3. Биологические мембраны осуществляют  барьерная функция, перенос веществ, трансформируют и запасают энергию. Они способны генерировать биоэлектрические потенциалы и проводить возбуждение, осуществлять клеточную рецепцию и межклеточные взаимодействия, участвуют в метаболизме клетки.

4. Структурно-функциональные нарушения мембран, возникающих при многих неблагоприятных воздействиях приводят к большому количеству заболеваний как отдельных частей (органов) организма, так и всего организма вцелом.

 

 

 

 

 

 

 

 

Список использованных источников

 

  1. Биологические мембраны, под ред. Д.С. Парсонса, пер. с англ., М., 2008.
  2. Болдырев А.А. Введение в биохимию мембран, М., 2006,
  3. Конев С.В. и Мажуль В.М. Межклеточные контакты. Минск, 2007.
  4. Кульберг А.Я. Рецепторы клеточных мембран, М., 2010.
  5. Маленков А.Г. и Чуич Г.А. Межклеточные контакты и реакции ткани, М., 2011.
  6. Сим Э. Биохимия мембран, пер. с англ., М., 2005.
  7. Финеан Дж., Колмэн Р. и Митчелл Р. Мембраны и их функции в клетке, пер. с англ., М., 2007.
  8. Малая медицинская энциклопедия. — М.: Медицинская энциклопедия. 1991—96 гг.
  9. Первая медицинская помощь. — М.: Большая Российская Энциклопедия. 1994. т. 3.
  10. Энциклопедический словарь медицинских терминов. — М.: Советская энциклопедия. — 1982—1984 гг.

 

 


Информация о работе Биологические мембраны