Автор работы: Пользователь скрыл имя, 05 Декабря 2013 в 13:32, реферат
Великий переворот в жизни человечества, связанный с внедрением ядерной энергии, открыл невиданные ранее возможности в решении многих проблем социального и экономического характера. В наши дни сфера применения радиоактивных веществ и источников ионизирующих излучений весьма многогранна. Это — использование радионуклидов в качестве так называемого метода меченых атомов с целью изучения закономерностей протекания процессов в различных сферах, осуществление неразрушающего контроля структуры сплавов, качества изделий, изменение физических и химических свойств различного рода материалов, стерилизация перевязочных материалов и медицинских изделий, исследования функционального состояния различных систем организма, лечение злокачественных новообразований и т. д.
К концу 1984 года в 26 странах работало 345 ядерных реакторов, выра-батывающих электроэнергию. Их мощ-ность составляла 13% суммарной мощ-ности всех источников электроэнергии и была равна 220 ГВт (рис. 4.12). До сих пор каждые ~ 5 лет эта мощность удваива-лась, однако, сохранится ли такой темп роста в будущем, неясно. Оценки предполагаемой суммарной мощности атом-ных электростанций на конец века имеют постоянную тенденцию к снижению. Причины тому - экономический спад, реализация мер по экономии электро-энергии, а также противодействие со стороны общественности. Согласно по-следней оценке МАГАТЭ (1983г.), в 2000 году мощность атомных электростанций будет составлять 720-950 ГВт.
Атомные электростанции являются лишь частью ядерного топливного цикла, который начинается с добычи и обогаще-ния урановой руды. Следующий этап-производство ядерного топлива. Отрабо-танное в АЭС ядерное топливо иногда подвергают вторичной обработке, чтобы извлечь из него уран и плутоний. Заканчи-вается цикл, как правило, захоронением радиоактивных отходов.
На каждой стадии ядерного топлив-ного цикла в окружающую среду по-падают радиоактивные вещества. НКДАР оценил дозы, которые получает население на различных стадиях цикла за короткие промежутки времени и за многие сотни лет. Заметим, что проведение таких оценок очень сложное и трудоемкое мы по атомной энергетике. Однако полученные оценки, конечно же, нельзя безоговорочно применять к какой-либо конкретной установке. Ими следует поль-зоваться крайне осторожно, поскольку они зависят от многих специально огово-ренных в докладе НКДАР допущений.
Примерно половина всей урановой руды добывается открытым способом, а половина - шахтным. Добытую руду ве-зут на обогатительную фабрику, обычно расположенную нейрдалеку. И рудники, и обогатительные фабрики служат источ-ником загрязнения окружающей среды радиоактивными веществами. Если рас-сматривать лишь непродолжительные периоды времени, то можно считать, что почти все загрязнение связано с местами добычи урановой руды. Обогатительные же фабрики создают проблему долговременного загрязнения: в процессе пере-работки руды образуется огромное количество отходов—«хвостов». Вблизи дейст-вующих обогатительных фабрик (в основ-ном в Северной Америке) уже скопилось 120 млн. т отходов, и если положение не изменится, к концу века эта величина возрастет до 500 млн. т.
Эти отходы будут оставаться радио-активными в течение миллионов лет, когда фабрика давно перестанет сущест-вовать. Таким образом, отходы являются главным долгоживущим источником об-лучения населения, связанным с атомной энергетикой. Однако их вклад в облучение можно значительно уменьшить, если отвалы заасфальтировать или покрыть их поливинилхлоридом. Конечно, покрытия необходимо будет регулярно менять.
Урановый концентрат, поступающий
с обогатительной фабрики, подвергается
дальнейшей переработке и очистке
и на специальных заводах
Теперь ядерное топливо готово к использованию в ядерном реакторе. Су-ществует пять основных типов энергети-ческих реакторов: водо-водяные реакторы с водой под давлением (Pressurised Water Reactor, PWR), водо-водяные кипящие реакторы (Boiling Water Reactor, BWR), разработанные в США и наиболее распро-страненные в настоящее время; реакторы с газовым охлаждением, разработанные и применяющиеся в Великобритании и Франции; реакторы с тяжелой водой, широко распространенные в Канаде; водо-графитовые канальные реакторы, которые эксплуатируются только в СССР. Кроме реакторов этих пяти типов в Европе и СССР имеются также четыре реактора- размножителя на быстрых ней-тронах, которые представляют собой ядерные реакторы следующего поколе-ния.
Величина радиоактивных выбросов у разных реакторов колеблется в широких пределах: не только от одного типа реактора к другому и не только для разных конструкций реактора одного и того же типа, но также и для двух разных реакторов одной конструкции. Выбросы могут существенно различаться даже для одного и того же реактора в разные годы, потому что различаются объемы текущих ремонтных работ, во время которых и происходит большая часть выбросов.
■МГ
В последнее время наблюдается тен-денция к уменьшению количества выбро-сов из ядерных реакторов, несмотря на увеличение мощности АЭС. Частично это связано с техническими усовершенствова-ниями, частично - с введением более стро-гих мер по радиационной защите.
В мировом масштабе примерно 10% использованного на АЭС ядерного топ-лива направляется на переработку для извлечения урана и плутония с целью повторного их использования. Сейчас имеются лишь три завода, где занимают-ся такой переработкой в промышленном масштабе: в Маркуле и Jla-Аге (Франция) и в Уиндскейле (Великобритания). Самым «чистым» является завод в Маркуле, на котором осуществляется особенно стро-гий контроль, поскольку его стоки по-падают в реку Рону. Отходы двух других заводов попадают в море, причем завод в Уиндскейле является гораздо большим источником загрязнения, хотя основная часть радиоактивных материалов попада-ет в окружающую среду не при переработ-ке, а в результате коррозии емкостей, в которых ядерное топливо хранится до переработки.
За период с 1975 по 1979 год на каждый гигаватт-год выработанной энер-гии уровень загрязнений от завода в Уиндскейле по -активности примерно в 3,5 раза, а по -активности в 75 раз превышал уровень загрязнений от завода в Ла-Аге.
С тех пор ситуация на заводе в Уиндскейле значительно улучшилась, однако в пересчете на единицу пере-работанного ядерного горючего это пред-приятие по-прежнему остается более «грязным», чем завод в Ла-Аге. Можно надеяться, что в будущем утечки на перерабатывающих предприятиях будут ниже, чем сейчас. Существуют проекты установок с очень низким уровнем утечки в воду, и НКДАР взял в качестве модельной установку, строительство ко-торой планируется в Уиндскейле. щж
Проблемы, связайные с последней стадией ядерного топливного цикла - захороне-нием высокоактивных отходов АЭС. Эти проблемы находятся в ведении прави-тельств соответствующих стран. В неко-торых странах ведутся исследования по отверждению отходов с целью последую-щего их захоронения в геологически стабильных районах на суше, на дне океана или в расположенных под ними пластах. Предполагается, что захоронен-ные таким образом радиоактивные отхо-ды не будут источником облучения насе-ления в обозримом будущем. НКДАР не оценивал ожидаемых доз облучения от таких отходов, однако в материалах по программе «Международная оценка ядер-ного топливного цикла» за 1979 год сделана попытка предсказать судьбу радиоактивных материалов, захоронен-ных под землей. Оценки показали, что заметное количество радиоактивных ве-ществ достигнет биосферы лишь спустя 105-106 лет.
По данным НКДАР, весь ядерный топливный цикл дает ожидаемую кол-лективную эффективную эквивалентную дозу облучения за счет короткоживущих изотопов около 5,5 чел-Зв на каждый гигаватт-год вырабатываемой на АЭС электроэнергии. Из них процесс добычи руды дает вклад 0,5 чел-Зв, ее обогащение-0.04 чел-Зв, производство ядерного топлива-0,002 чел-Зв, эксплу-атация ядерных реакторов - около 4 чел-Зв (наибольший вклад) и, наконец, про-цессы, связанные с. регенерацией топлива, -1 чел-Зв. Как уже отмечалось, данные по регенерации получены из оценок ожидаемых утечек на заводах, которые предполагается построить в будущем. На самом же деле для современных установок эти цифры в 10-20 раз выше, но эти установки перерабаты-вают лишь 10% отработанного ядерного топлива, таким образом, приведенная выше оценка остается справедливой.
90% всей дозы облучения, обусловлен-ной короткоживущими изотопами, насе-ление получает в течение года после выброса, 98%-в течение 5 лет. Почти вся доза приходится на людей, живущих не далее нескольких тысяч километров от АЭС.
Ядерный топливный цикл сопровож-дается также образованием большого количества долгоживущих радионукли-дов, которые распространяются по всему земному шару. НКДАР оценивает кол-лективную эффективную ожидаемую эк-вивалентную дозу облучения такими изотопами в 670 чел-Зв на каждый гигаватт-год вырабатываемой электро-энергии, из которых на первые 500 лет после выброса приходится менее 3%.
Таким образом, от долгоживущих радионуклидов все население Земли получает примерно такую же средне-годовую дозу облучения, как и население, живущее вблизи АЭС, от короткоживу-щих радионуклидов, при этом долго-живущие изотопы оказывают свое воздействие в течение гораздо более длитель-ного времени-90% всей дозы население получит за время от тысячи до сотен миллионов лет после выброса. Следова-тельно, люди, живущие вблизи АЭС, даже при нормальной работе реактора по-лучают всю дозу сполна от короткоживущих изотопов и малую часть дозы от долгоживущих.
Эти цифры не учитывают вклад в облучение от радиоактивных отходов, образующихся в результате переработки руды, и от отработанного топлива. Есть основания полагать, что в ближайшие несколько тысяч лет вклад радиоактив-ных захоронений в общую дозу облучения будет оставаться пренебрежимо малым, 0,1-1% от ожидаемой коллективной дозы для всего населения. Однако радиоактив-ные отвалы обогатительных фабрик, если их не изолировать соответствующим образом, без сомнения, создадут серьез-ные проблемы. Если учесть эти два дополнительных источника облучения, то для населения Земли ожидаемая кол-лективная эффективная эквивалентная доза облучения за счет долгоживущих радионуклидов составит около 4000 чел-Зв на каждый гигаватт-год вырабатывае-мой энергии. Все подобные оценки, однако, неизбежно оказываются ориенти-ровочными, поскольку трудно судить не только о будущей технологии переработ-ки отходов, численности населения и местах его проживания, но и о дозе, которая будет иметь место через 10000 лет. Поэтому НКДАР советует не слиш-ком полагаться на эти оценки при приня-тии каких-либо решений.
Годовая коллективная эффективная доза облучения от всего ядерного цикла в 1980 году составляла около 500 чел-Зв. Ожидается, что к 2000 году она возрастет до 10000 чел-Зв, а к 2100 году-до 200000 чел-Зв. Эти оценки основаны на пес-симистическом предположении, что ны-нешний уровень выбросов сохранится и не будут введены существенные технические усовершенствования. Но даже и в этом случае средние дозы будут малы по сравнению с дозами, получаемыми от естественных источников, в 2100 году они составят лишь 1% от естественного фона.
Люди, проживающие вблизи ядерных реакторов, без сомнения, получают гораз-до большие дозы, чем население в сред-нем. Тем не менее в настоящее время эти дозы обычно не превышают нескольких процентов естественного радиационного фона. Более того, даже доза, полученная людьми, живущими около завода в Уиндскейле, в результате выброса це-зия-137 в 1979 году была, по-видимому, меньше 1/4 дозы, полученной ими от естественных источников за тот же год.
Все приведенные выше цифры, конеч-но, получены в предположении, что ядерные реакторы работают нормально. Однако количество радиоактивных ве-ществ, поступивших в окружающую среду при авариях, может оказаться гораздо больше. В одном из последних докла-дов НКДАР была сделана попытка оценить дозы, полученные в результате аварии в Тримайл-Айленде в 1979 году и в Уиндскейле в 1957 году. Оказалось, что выбросы при аварии на АЭС в Тримайл-Айленде были незначительными, однако, согласно оценкам, в результате аварии в Уиндскейле ожидаемая коллективная эффективная эквивалентная доза состави-ла 1300 чел-Зв. Комитет, однако, считает, что нельзя прогнозировать уровень ава-рийных выбросов на основании анализа последствий этих двух аварий.
Профессиональное облучение
Самые большие дозы облучения, источ-ником которого являются объекты атом-ной промышленности, получают люди, которые на них работают. Профес-сиональные дозы почти повсеместно являются самыми большими из всех видов доз.
Попытки оценить профессиональные
дозы осложняются двумя
Оценки показывают, что доза, которую получают рабочие урановых рудников и обогатительных фабрик, составляет в среднем 1 чел-Зв на каждый гигаватт-год электроэнергии. Примерно 90% этой дозы приходится на долю рудников, причем персонал, работаю; в шахтах, подвергается большему облучению. Коллективная эквивалентная от заводов, на которых получают ядерное топливо, также составляет 1 чел- Зв г гигаватт-год.
НОРМЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ
При работе с радиоактивными веществами в открытом виде возможно загрязнение рук, одежды, оборудования, воздуха, поэтому обязателен радиационный контроль. Цель его - следить за соблюдением норм радиационной безопасности в отделениях и комнатах лучевой терапии и диагностики, а также за облучением лиц, профессионально связанных с работой в сфере действия ионизирующих излучений. Национальной комиссией радиационной зашиты /ПКРЗ/ еще при Минздраве СССР были установлены нормы радиационной безопасности /нормы РБ/.
Нормы РБ предусматривают соблюдение следующих принципов:
1\ не
превышение установленного
2\ исключение
всякого необоснованного
3\ снижение дозы излучения до возможно низкого уровня.
I :
С целью ограничения облучения и дозиметрического контроля за ним введены понятия: предельно допустимая доза, предел дозы, категория облучаемых лиц и группа критических органов.
Установлены следующие категории облучаемых лиц: категория А-персонал, непосредственно работающий с источниками ионизирующих излучений; категория Б - ограниченная часть населения; лица, которые непосредственно не работают с источниками излучений, но по условиям расположения рабочих мест, либо проживания могут быть подвержены облучению; категория В - населения в целом.
Предельно допустимая доза /ПДЦ/ - наибольшее значение индивидуальной дозы за год, которая при равномерном воздействии в течение 50 лет не вызывает у человека каких- либо неблагоприятных изменений, обнаруживаемых современными методами исследования. По мере расширения наших знаний величина предельно допустимой дозы может уточняться. ПДЦ является основным дозовым пределом для категории А.
Информация о работе Ядерная опасность Семипалатинского полигона