Наука о безопасности жизнедеятельности, ее сущность и методология

Автор работы: Пользователь скрыл имя, 05 Апреля 2013 в 03:48, шпаргалка

Краткое описание

20-ый век характеризуется масштабным развитием промышленности, сельского хозяйства, энергетики, транспорта, что вызвало значительные изменения в окружающей среде. В результате активной техногенной деятельности человека появилась новая среда обитания – техносфера, однако уровень ее негативного влияния на человека оказался довольно высок, возникла потребность защитить природу и человека. Так появилась наука о без-ти жизнедеятельности.

Прикрепленные файлы: 1 файл

ОБЖ.docx

— 455.52 Кб (Скачать документ)

13) Вибрация, ее  воздействие на организм человека  и гигиеническое нормирование.

Малые механические колебания, возникающие в упругих телах  или телах, находящихся под воздействием переменного физического поля, называются вибрацией. Воздействие вибрации на человека классифицируют: по способу  передачи колебаний; по направлению  действия вибрации; по временной характеристике вибрации. 
В зависимости от способа передачи колебаний человеку, вибрацию подразделяют на общую, передающуюся через опорные поверхности на тело сидящего или стоящего человека, и локальную, передающуюся через руки человека. Вибрация, воздействующая на ноги сидящего человека, на предплечья, контактирующие с вибрирующими поверхностями рабочих столов, также относится к локальной. 
Вибрационная патология стоит на втором месте (после пылевых) среди профессиональных заболеваний. Рассматривая нарушения состояния здоровья при вибрационном воздействии, следует отметить, что частота заболеваний определяется величиной дозы, а особенности клинических проявлений формируются под влиянием спектра вибраций. Выделяют три вида вибрационной патологии от воздействия общей, локальной и толчкообразной вибраций. По направлению действия вибрацию подразделяют на: вертикальную и горизонтальную. По временной характеристике различают: постоянную и непостоянную вибрацию.  
Вр. воздействия: повреждения различных органов и тканей; влияние на центр. нервную систему и опорно-двигательный аппарат; влияние на органы слуха и зрения; повышение утомляемости, симптомы укачивания, а так же на обменные процессы. 
Гигиеническое нормирование вибраций регламентирует параметры производственной вибрации и правила работы с виброопасными механизмами и оборудованием, ГОСТ 12.1.012–90 «ССБТ. Вибрационная безопасность. Общие требования», Санитарные нормы СН 2.2.4/2.1.8.556–96 «Производственная вибрация, вибрация в помещениях жилых и общественных зданий». Документы устанавливают: классификацию вибраций, методы гигиенической оценки, нормируемые параметры и их допустимые значения, режимы труда лиц виброопасных профессий, подвергающихся воздействию локальной вибрации, требования к обеспечению вибробезопасности и к вибрационным характеристикам машин.

14) Обеспечение  вибрационных условий труда.Основная мера защиты от вибрации — виброизоляция источника колебаний. Примером являются автомобильные и вагонные рессоры. Виброактивные агрегаты устанавливаются на виброизоляторах (пружины, упругие прокладки, пневматичские или гидравлические устройства), защищающих фундамент от воздействий. 
На виброопасных работах следует применять теплоизолирующие, виброгасящие коврики, прокладки, антивибрационные рукавицы.  
При использовании виброопасного инструмента работы необходимо проводить с применением режимов труда для работников виброопасных профессий, предусматривающих общее ограничение времени контакта с вибрацией, рациональное распределение работ с ручным инструментом в течение рабочей смены, порядок чередования с другими работами в зависимости от интенсивности воздействующей вибрации, ограничение длительности непрерывного одноразового воздействия вибрации, использование рабочих перерывов для активного отдыха и лечебных профилактических мероприятий и процедур и направленных на обеспечение вибробезопасных условий труда на конкретных рабочих местах.

15) Ионизирующие  излучения, их действие на организм  человека.Ионизирующим излучением (ИИ) называют потоки частиц и электромагнитных квантов, образующихся при ядерных превращениях, т.е. в результате радиоактивного распада. Чаще всего встречаются такие разновидности ионизирующих излучений, как рентгеновское и гамма-излучения, потоки альфа-частиц, электронов, нейтронов и протонов. Ионизирующее излучение прямо или косвенно вызывает ионизацию среды, т.е. образование заряженных атомов или молекул - ионов.  
Альфа-частицы представляют собой положительно заряженные ядра атомов гелия. Эти частицы испускаются при радиоактивном распаде некоторых элементов с большим атомным номером. 
Бета-частицы - возникают в ядрах атомов при радиоактивном распаде и сразу же излучаются оттуда со скоростью, близкой к скорости света.  
Рентгеновское излучение представляет собой электромагнитное излучение высокой частоты и с короткой длиной волны, возникающее при бомбардировке вещества потоком электронов. Важнейшим свойством рентгеновского излучения является его большая проникающая способность 
Гамма-излучение относится к электромагнитному излучению и представляет собой поток квантов энергии, распространяющихся со скоростью света, обладают более короткими длинами волн, чем рентгеновское излучение.  
Нейтронное излучение - это поток нейтральных частиц. Эти частицы вылетают из ядер атомов при некоторых ядерных реакциях, в частности, при реакциях деления ядер урана и плутония. Отличительной особенностью нейтронного излучения является способность превращать атомы стабильных элементов в их радиоактивные изотопы, что резко повышает опасность нейтронного облучения.  
Ионизирующее излучение вызывает в организме цепочку обратимых и необратимых изменений Ионизирующая радиация при воздействии на организм человека может вызвать два вида эффектов, которые клинической медициной относятся к болезням: детерминированные пороговые эффекты (лучевая болезнь, лучевой ожог, лучевая катаракта, лучевое бесплодие, анамалии в развитии плода и др.) и стохастические (вероятностные) беспороговые эффекты (злокачественные опухоли, лейкозы, наследственные болезни). 
Степень воздействия радиации зависит от того, является облучение внешним или внутренним (при попадании радиоактивного изотопа внутрь организма). Внутреннее облучение возможно при вдыхании, заглатывании радиоизотопов и проникновении их в организм через кожу. Некоторые вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам радиации. Кальций, радий, стронций и другие накапливаются в костях, изотопы йода вызывают повреждение щитовидной железы, редкоземельные элементы – преимущественно опухоли печени. Равномерно распределяются изотопы цезия, рубидия, вызывая угнетение кроветворения, атрофию семенников, опухоли мягких тканей. При внутреннем облучении наиболее опасны альфа-излучающие изотопы полония и плутония. 
Способность вызывать отдаленные последствия – лейкозы, злокачественные новообразования, раннее старение – одно из коварных свойств ионизирующего излучения.

16) Защита от  воздействия ионизирующих излучений.

В зависимости от типа ионизирующего  излучения могут быть разные меры защиты: уменьшение времени облучения, увеличение расстояния до источников ионизирующего излучения, ограждение источников ионизирующего излучения, герметизация источников ионизирующего  излучения, оборудование и устройство защитных средств, организация дозиметрического контроля, меры гигиены и санитарии.  
В России, на основе рекомендаций Международной комиссии по радиационной защите, применяется метод защиты населения нормированием. Разработанные нормы радиационной безопасности учитывают три категории облучаемых лиц:  
А - персонал, т.е. лица, постоянно или временно работающие с источниками ионизирующего излучения; 
Б - ограниченная часть населения, т.е. лица, непосредственно не занятые на работе с источниками ионизирующих излучений, но по условиям проживания или размещения рабочих мест могущие подвергаться воздействию ионизирующих излучений; 
В - всё население. 
Для категорий А и Б, с учётом радиочувствительности разных тканей и органов человека, разработаны предельно допустимые дозы облучения Ниже предлагаются рекомендации общего характера по защите от ионизирующего излучения разного типа.  
От альфа-лучей можно защититься путём: увеличения расстояния до ИИИ, т.к. альфа-частицы имеют небольшой пробег; использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока; исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.  
В качестве защиты от бета-излучения используют: ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц; методы и способы, исключающие попадание источников бета-излучения внутрь организма. 
Защиту от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе): 

    • увеличение расстояния до источника излучения;
    • сокращение времени пребывания в опасной зоне;
    • экранирование источника излучения материалами с большой плотностью (свинец, железо, бетон и др.);
    • использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;
    • использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;
    • дозиметрический контроль внешней среды и продуктов питания.

17) Электромагнитные  излучения, их воздействие на  организм человека.Ни для кого не секрет, что внешние электромагнитные излучения оказывают негативное воздействие на организм человека. Люди, находясь на улице, в транспорте, жилище, буквально окутаны проводами. В крупных городах места, где техногенный электромагнитный фон превышает допустимые нормы в десятки и сотни раз, растут устрашающими темпами. Источниками электромагнитных излучений служат радиотехнические и электронные устройства, индукторы, конденсаторы термических установок, трансформаторы, антенны, фланцевые соединения волноводных трактов, генераторы сверхвысоких частот и др.  
Электромагнитные поля человек не видит и не чувствует и именно поэтому не всегда предостерегается от опасного воздействия этих полей. Электромагнитные излучения оказывают вредное воздействие на организм человека. В крови, являющейся электролитом, под влиянием электромагнитных излучений возникают ионные токи, вызывающие нагрев тканей. При определённой интенсивности излучения, называемой тепловым порогом, организм может не справиться с образующимся теплом. Длительное воздействие на человека электромагнитных полей приводит к расстройствам, которые выражаются жалобами на головную боль, вялость, расстройство сна, снижение памяти, повышенную раздражительность, апатию, боли в сердце, нарушения  ритма сердечных сокращений. Могут наблюдаться нарушения центральной нервной системы и сердечно сосудистой, а так же изменения в составе крови. Поэтому необходимо ограничить время пребывания человека в зоне действия электромагнитных полей.

19)Лазерное излучение,  его действие на организм человека.

Представляет собой особый вид электромагнитного излучения. Отличие ЛИ от других видов излучения заключается в монохроматичности, когерентности и высокой степени направленности.  
При оценке биологического действия следует различать прямое, отраженное и рассеянное ЛИ. Эффекты воздействия определяются механизмом взаимодействия ЛИ с тканями (тепловой, фотохимический, ударно-акустический и др.) и зависят от длины волны излучения, длительности импульса (воздействия), частоты следования импульсов, площади облучаемого участка, а также от биологических и физико-химических особенностей облучаемых тканей и органов. Лазерное излучение представляет особую опасность для тех тканей, которые максимально поглощают излучение. 
Воздействие лазерного излучения на организм человека носит сложный характер и обусловлено как непосредственным действием лазерного излучения на облучаемые ткани, так и вторичными явлениями, выражающимися в различных изменениях, возникающих в организме в результате облучения. Различают термическое и нетермическое действия лазерных излучений.




 

 

 

20) Гигиеническое  нормирование лазерного излучения,  меры защиты.

При нормировании Л И устанавливают предельно допустимые уровни ЛИ для двух условий облучения – однократного и хронического, для всex диапазонов длин волн: 180...300 нм, 380...1400 нм, 1400...100 000 нм. Нормируемыми параметрами являются энергетическая экспозиция Н и облученность Е. 
Гигиеническая регламентация ЛИ производится по Санитарным нормам и правилам устройства и эксплуатации лазеров – СН 5804– 91. 
В зависимости от выходной энергии (мощности) и ПДУ при однократном воздействии генерируемого излучения по степени опасности лазеры разделяют на четыре класса. К лазерам I класса относят полностью безопасные лазеры, выходное излучение которых не представляет опасности при облучении глаз и кожи. У лазеров II класса выходное излучение представляет опасность при облучении кожи или глаз человека коллимированным пучком (пучком, заключенным в ограниченном телесном угле); диффузно отраженное их излучение безопасно как для кожи, так и для глаз. 
Выходное излучение лазеров III класса представляет опасность при облучении глаз не только коллимированным, но и диффузно отраженным излучением на расстоянии 10 см от отражающей поверхности и (или) при облучении кожи коллимированным пучком. Диффузно отраженное излучение не представляет опасности для кожи. Этот класс распространяется только на лазеры, генерирующее излучение которых в спектральном диапазоне составляет 380...1400 нм. 
К лазерам IV класса относят такие лазеры, диффузно отраженное излучение которых представляет опасность для глаз и кожи на расстоянии 10 см от отражающей поверхности. 
Под лазерной безопасностью понимается совокупность технических, санитарно-гигиенических и организационных мероприятий, обеспечивающих безопасные условия труда персонала при использовании лазеров.  
Принятие тех или иных мер лазерной безопасности зависит, прежде всего, от класса лазера.  
Все лазеры должны быть маркированы знаком лазерной опасности. Размещение лазеров разрешается только в специально оборудованных помещениях. Размещать оборудование нужно достаточно свободно.  
Методы и аппаратура дозиметрического контроля лазерного излучения изложены в ГОСТ 12.1.031-81 “ССБТ. Лазеры.  
В тех случаях, когда лазерная безопасность коллективными средствами защиты не обеспечивается, должны применяться индивидуальные средства защиты-очки и маски. 

21) Влияние ультрафиолетового  излучения на человека, обеспечение  безопасности.

Для организма человека вредное  влияние оказывает как недостаток ультрафиолетового излучения, так  и его избыток. Воздействие на кожу больших доз УФ-излучения  приводит к кожным заболеваниям (дерматитам). Повышенные дозы УФ-излучения воздействуют и на центральную нервную систему, отклонения от нормы проявляются  в виде тошноты, головной боли, повышенной утомляемости, повышения температуры  тела и др.  
Ультрафиолетовое излучение с длиной волны менее 0,32 мкм отрицательно влияет на сетчатку глаз, вызывая болезненные воспалительные процессы. Уже на ранней стадии этого заболевания человек ощущает боль и чувство песка в глазах. Заболевание сопровождается слезотечением, возможно поражение роговицы глаза и развитие светобоязни ("снежная" болезнь). При прекращении воздействия ультрафиолетового излучения на глаза симптомы светобоязни обычно проходят через 2-3 дня.  
Недостаток УФ-лучей опасен для человека, так как эти лучи являются стимулятором основных биологических процессов организма. Наиболее выраженное проявление "ультрафиолетовой недостаточности" – авитаминоз. Подобные проявления характерны для осенне-зимнего периода при значительном отсутствии естественной ультрафиолетовой радиации ("световое голодание"). В осенне-зимний период рекомендуется умеренное, под наблюдением медицинского персонала, искусственное ультрафиолетовое облучение Для защиты от избытка УФИ применяют противосолнечные экраны, которые могут быть химическими (химические вещества и покровные кремы, содержащие ингредиенты, поглощающие УФИ) и физическими (различные преграды, отражающие, поглощающие или рассеивающие лучи). Хорошим средством защиты является специальная одежда, изготовленная из тканей, наименее пропускающих УФИ (например, из поплина). Для защиты глаз в производственных условиях используют светофильтры (очки, шлемы) из тёмно-зелёного стекла. Полную защиту от УФИ всех длин волн обеспечивает флинтглаз (стекло, содержащее окись свинца) толщиной 2 мм. 

Информация о работе Наука о безопасности жизнедеятельности, ее сущность и методология