16-этажный жилой дом с монолитным каркасом

Автор работы: Пользователь скрыл имя, 04 Марта 2013 в 08:17, дипломная работа

Краткое описание

Дипломный проект на тему «16-этажный жилой дом с монолитным каркасом в г. Краснодаре» содержит архитектурно-строительные решения, расчёт и конструирование несущих и ограждающих конструкций 16-этажного жилого дома со встроенными помещениями – на 1-м этаже и с жилыми квартирами на последующих.
Проектом предусмотрена связевая система здания: несущие поперечные, продольные стены и ядро жесткости в виде стен лифтовых шахт и лестничной клетки; перекрытия выполнены в виде монолитной безбалочной плиты. Ограждающая конструкция стен выполнена в виде кладки из пенобетонных блоков, теплоизоляционного слоя и облицовочного кирпича.

Прикрепленные файлы: 1 файл

16-этажный жилой дом с монолитным каркасом.doc

— 832.50 Кб (Скачать документ)

22. Требуемая краткость  воздухообмена жилого дома , 1/ч, согласно СНиП 2.08.01, устанавливается из расчета 3м3/ч удаляемого воздуха на 1м2 жилых помещений, определяется по формуле:

 

= 3.7990/(0.85х50752,5)=0,556 (1/ч),

 

где Ar – жилая площадь, м2;

bv – коэффициент, учитывающий долю внутренних ограждающих конструкций в отапливаемом объеме здания, принимаемый равным 0.85;

Vh – отапливаемый объем здания, м3.

23. Приведенный инфильтрационный (условный) коэффициент теплопередачи  здания определяется по формуле:

 

Kminf=0.28.c.na.bV.Vh.gaht.k/Aesum,

 

Kminf=0,28×0,556×0,85×50752,5×1,283×0,8/7987,9=0,86 (Вт/(м2.0С)).

где с – удельная теплоемкость воздуха, равная 1кДж/(кг.0С),

na – средняя кратность воздухообмена здания за отопительный период (для жилых зданий 3м3/ч, для других зданий согласно СНиП 2.08.01 и СНиП 2.08.02;

bV – коэффициент снижения объема воздуха в здании, учитывающий наличие внутренних ограждающих конструкций, при отсутствии данных принимать равным 0.85;

Vh – отапливаемый объем здания;

gaht – средняя плотность наружного воздуха за отопительный период, равный 353/(273+2)=1.283

k – коэффициент учета влияния встречного теплового потока в конструкциях, равный 0.7 – для стыков панельных стен, 0.8 – для окон и балконных дверей;

Aesum – общая площадь наружных ограждающих конструкций, включая покрытие и перекрытие пола первого этажа;

24. Общий коэффициент  теплопередачи, Вт/(м2.0С), определяемый по формуле:

 

Km=Kmtr+Kminf=1,09+0,86=1,95 (Вт/(м2.0С)).

Теплоэнергетические показатели

25. Общие теплопотери  через ограждающую оболочку здания  за отопительный период Qh, МДж, определяют по формуле:

 

Qh=0.0864.Km.Dd.Aesum,

 

Qh=0.0864. 1,95×2682×7987,9=3609439 (МДж).

26. Удельные бытовые тепловыделения qint, Вт/м2, следует устанавливать исходя из расчетного удельного электро- и газопотребления здания, но не менее 10Вт/м2. Принимаем 10Вт/м2.

27. Бытовые теплопоступления в здание за отопительный период, МДж:

Qint=0.0864.qint.Zht.Al=0.0864.10.149.(5580+1911)=964361 (МДж).

28. Теплопоступления в  здание от солнечной радиации  за отопительный период определяется  по формуле (3.14).

Определим теплопоступления:

 

Qs=tF.kF.(AF1I1+ AF2I2+ AF3I3+AF4I4)=

=0.8.0.8 (1605.539)=553660,8 (МДж).

 

29. Потребность  в тепловой энергии на отопление  здания за отопительный период, МДж, определяют по формуле  (3.6а) при автоматическом регулировании  теплопередачи нагревательных приборов в системе отопления:

 

Qhy=[Qh – (Qint+Qs).V].bh,

Qhy=[3609439 – (964361+553660,8).0.8].1.11=2658474 (МДж).

 

30. Удельный расход  тепловой энергии на отопление  здания qhdes, кДж/(м2.0С.сут) определяется по формуле (3.5):

 

qhdes=103.Qhy/Ah.Dd,

qhdes=2658474×103/(16080.2682)=61,6 (кДж/(м2.0С.сут)).

 

31. Расчетный коэффициент энергетической  эффективности системы отопления  и централизованного теплоснабжения  здания от источника теплоты  принимаем h0des=0.5, так как здание подключено к существующей системе централизованного теплоснабжения.

32. Требуемый удельный расход  тепловой энергии системой теплоснабжения  на отопление здания принимается  по таблице 3.7 – для 16-этажного здания равен 70кДж/(м2.0С.сут).

Следовательно, полученный нами результат  значительно меньше требуемого 61,6<70, поэтому мы имеем возможность уменьшать приведенные сопротивления теплопередачи ограждающих конструкций, определенные по таблице 1 «б» СНиП II-3–79*, исходя из условий энергосбережения. (Изменения вносим в пункт 19).

19. Для второго этапа расчета примем следующие сопротивления теплопередачи ограждающих конструкций:

  • стен Rwreq=1,91 м2.0С / Вт
  • окон и балконных дверей Rfreq=0.367 м2.0С / Вт – (Без изменения)
  • глухой части балконных дверей RF1req=0.81 м2.0С / Вт – (Без изменения)

– наружных входных дверей Redreq=0.688 м2.0С / Вт;

  • совмещенное покрытие Rcreq=1,63м2.0С / Вт
  • перекрытия первого этажа Rf=2 м2.0С / Вт

20. Приведенный трансмиссионный  коэффициент теплопередачи здания:

Kmtr=1.13 (5977,9/1,91+1605,8/0,367+401,25/0,81+44,66/0,688+

+0,6×1005/2)/7987,9=1,16 (Вт/(м2.0С)).

21. (Без изменения). Воздухопроницаемость  стен, покрытия, перекрытия первого  этажа Gmw=Gmc=Gmf=0.5 кг/(м2.ч), окон в деревянных переплетах и балконных дверей GmF=6 кг/(м2.ч). (Таблица 12 СНиП II-3–79*).

22. (Без изменения). Требуемая краткость воздухообмена жилого дома na, 1/ч, согласно СНиП 2.08.01, устанавливается из расчета 3м3/ч удаляемого воздуха на 1м2 жилых помещений, определяется по формуле:

na=0,556 (1/ч).

23. (Без изменения). Приведенный  инфильтрационный (условный) коэффициент теплопередачи здания:

 

Kminf=0,86 (Вт/(м2.0С)).

 

24. Общий коэффициент  теплопередачи, Вт/(м2.0С), определяемый по формуле:

 

Km=Kmtr+Kminf=1,16+0,86=2,02 (Вт/(м2.0С)).

 

Теплоэнергетические показатели

25. Общие теплопотери  через ограждающую оболочку здания за отопительный период Qh, МДж:

Qh=0,0864. 2,02.2682. 7987,9=3739009 (МДж).

26. (Без  изменения). Удельные бытовые тепловыделения  qint=10Вт/м2.

27. (Без изменения). Бытовые  теплопоступления в здание за  отопительный период, МДж:

Qint=964361 (МДж).

28. (Без изменения). Теплопоступления  в здание от солнечной радиации  за отопительный период:

Qs=553660,8 (МДж).

29. Потребность в тепловой  энергии на отопление здания  за отопительный период, МДж:

 

Qhy=[Qh – (Qint+Qs).V].bh,

Qhy=[3739009 – (964361+553660,8).0.8].1.11=2802297 (МДж).

 

30. Удельный расход  тепловой энергии на отопление  здания qhdes, кДж/(м2.0С.сут):

qhdes=103.Qhy/Ah.Dd,

qhdes=2802297×103/(16080×2682)=67,2 (кДж/(м2.0С.сут)).

 

При требуемом qhreq=70кДж/(м2.0С.сут).

По принятым сопротивлениям теплопередаче определимся конструкциями ограждений и толщиной утеплителя стен, совмещенного покрытия и перекрытия 1-го этажа.

Стены.

1. Керамический кирпич: d=120 мм

– плотность g=1400 кг/м3,

– коэффициент теплопроводности lА=0,52Вт/(м.0С).

2. Пенополистирольные плиты:

- плотность g=40 кг/м3,

– коэффициент теплопроводности lА=0,041Вт/(м.0С).

3. Пенобетонные блоки: d=200 мм

– плотность g=600 кг/м3,

– коэффициент теплопроводности lА=0,22Вт/(м.0С).

  1. Цементно-песчанная штукатурка: d=20 мм

– плотность g=1600 кг/м3,

– коэффициент теплопроводности lА=0,7Вт/(м.0С).

Сопротивление теплопередачи:

 

R0=Rв+Rш+Rпб+Rутеп+Rвп+Rк+Rн=R0треб;

 

1/8.7+0.02/0.7+0,2/0,22+dутеп/0,041+0,12/0,52+1/23=1,91,

откуда dутеп=0,055 м=55 мм.

Принимаем толщину утеплителя d1=60 мм.

Совмещенное покрытие.

Теплотехнические показатели материалов компоновки покрытия:

  1. Цементно-песчаная стяжка: d=40 мм

плотность g=1800 кг/м3,

lА=0.76Вт/(м.0С).

  1. Утеплитель – гравий керамзитовый:

плотность g=600 кг/м3,

lА=0.17Вт/(м.0С).

  1. Монолитная ж/б плита: d=200 мм

плотность g=2500 кг/м3,

коэффициент теплопроводности lА=1.92Вт/(м.0С).

Сопротивление теплопередаче:

 

R0=Rв+Rж/б+Rутеп+Rст+Rн=R0треб;

 

1/8.7+0,2/1,92+dутеп/0,17+0,04/0,76+1/23=1,63,

откуда dутеп=0,05 м = 50 мм

Перекрытие  первого этажа

1. Дубовый паркет: d=15 мм

плотность g=700 кг/м3,

lА=0,35Вт/(м.0С).

2. Цементно-песчаная стяжка:

плотность g=1800 кг/м3, d=40 мм

lА=0.76Вт/(м.0С).

3. Утеплитель – пенополистирольные плиты:

плотность g=40 кг/м3,

коэффициент теплопроводности lА=0,041Вт/(м.0С).

4. Монолитная ж/б плита: d=200 мм

плотность g=2500 кг/м3,

коэффициент теплопроводности lА=1.92Вт/(м.0С).

Сопротивление теплопередаче:

 

R0=Rв+Rпар.+Rст+Rутеп+Rж/б+Rн=R0треб;

 

1/8.7+0,04/0,76+0,015/0,35+dутеп/0,041+0,2/1,92+1/23=2,

откуда dутеп=0,067 м = 70 мм.

Конструктивное решение  здания

Согласно отчету геолого-литологического  строения участка до глубины 20 м следующее: под лессовой делювиально-эоловой толщей суглинков залегают аллювиальные грунты, представленные пачкой песчано-глинистых грунтов, супесей, песков, глин.

Проектом предусмотрена связевая система здания: несущие поперечные, продольные стены и ядро жесткости в виде стен лифтовых шахт и лестничной клетки толщиной 200 мм; перекрытия выполнены в виде монолитной безбалочной плиты толщиной 200 мм. Все несущие конструкции выполнены из бетона класса В25.

Лестничные марши и площадки монолитные из бетона класса В25.

Наружные стены самонесущие  с поэтажным опиранием. Прикрепление стен к каркасу здания шарнирное, без жестких стыков и призвано на раздельную работу с каркасом при сейсмических нагрузках. Стены толщиной 400 мм: облицовочный модульный кирпич – 120 мм, эффективный утеплитель из пенополистерола – 60 мм, легкобетонный блок – 200 мм.

Фундаменты – монолитная железобетонная плита.

Стены подвала несущие из монолитного  железобетона класса В20, толщиной 200 мм.

Перегородки в здании двух типов  межквартирные и внутриквартирные выполненные из пенобетонных блоков размерами 600*300*100 мм. Внутриквартирные толщиной 100 мм однослойные оштукатуренные с двух сторон. Межквартирные из двух рядов блоков с прослойкой из минераловатных полужестких плит толщиной 60 мм.

Железобетонные экраны ограждений балконов и лоджий толщиной 100 мм с отделкой поверхности шпатлёвкой и последующей окраской фасадной краской DYOTEX.

Окна, витражи, балконные и наружные двери металлопластиковые с остеклением  стеклопакетами. Двери внутри квартир  и офисов – деревянные. Входные  двери квартир металлические с текстурированной поверхностью.

Кровля плоская совмещённая  из 2-хслойного рубероидного ковра с утеплителем из керамзитового гравия по стяжке из цементно – песчаного раствора. Пароизоляция и гидроизоляция выполнена из рубероида в один слой.

 

4.4 Инженерное оборудование

 

4.4.1 Отопление

Система отопления – центральная, водяная, однотрубная вертикальная с нижней разводкой магистралей, регулируемая.

На вводе теплоносителя в  дом оборудуется автоматизированный индивидуальный тепловой пункт с  узлом ввода, для регулирования действующих давлений в тепловой сети, централизованного приготовления горячей воды системы горячего водоснабжения здания.

Информация о работе 16-этажный жилой дом с монолитным каркасом