Автор работы: Пользователь скрыл имя, 01 Марта 2014 в 15:15, реферат
Индуктивные датчики основаны на преобразовании линейных перемещений в изменение индуктивности катушки. Преимуществами индуктивного метода измерений являются: непрерывность измерения; возможность регистрации непрерывно изменяющихся величин, что необходимо при контроле параметров зубчатых, колес, перемещений узлов станков и др.; возможность отсчета действительных отклонений измеряемой величины по шкале прибора; дистанционность измерений; высокая чувствительность и простота конструкции датчиков. Недостатками метода являются сравнительная сложность электрических схем включения датчиков и влияние отклонений параметров схемы на результаты измерения.
Погрешность индуктивных преобразователей
Температурная погрешность индуктивных преобразователей в основном обусловлена изменением активной составляющей их сопротивления. Эта погрешность аддитивна и уменьшается в случае применения мостовых схем. Кроме того, при изменении температуры изменяется магнитная проницаемость стали, что приводит к некоторому дополнительному изменению аддитивной и мультипликативной погрешностей.
При изменении напряжения питания меняется магнитная проницаемость магнитопровода преобразователя, а следовательно, его сопротивление и чувствительность. Изменяется также чувствительность мостовой измерительной цепи. Изменение сопротивления приводит к аддитивной погрешности и компенсируется мостовой цепью. Изменение чувствительности создает мультипликативную погрешность. Для ее уменьшения либо стабилизируют напряжение источника питания моста, либо применяют компенсационные схемы измерения.
Изменение частоты питающего напряжения приводит к изменению сопротивления резисторов, включенных в мост, и меняет чувствительность. Малую погрешность имеют мостовые схемы (рисунок 7), у которых чувствительность в режиме холостого хода не зависит от параметров цепи. У других схем для уменьшения погрешности нужно стабилизировать частоту питающего напряжения.
При перемещении якоря преобразователя изменяется выходное напряжение моста. При среднем положении якоря должно быть UBhlx = = 0. Однако практически имеется небольшое напряжение, что приводит к аддитивной погрешности измерительного моста.
Для балансировки мостов переменного тока необходима раздельная регулировка действительной и мнимой составляющих его выходного напряжения. В мостах с индуктивными преобразователями одна составляющая регулируется перемещением якоря преобразователя, другая — путем регулировки других сопротивлений (например, сопротивлений R в схеме на рисунке 6). Если регулировка сделана недостаточно тщательно, то изменением положения якоря нельзя полностью сбалансировать схему.
Другая причина погрешности моста заключается в том, что в питающем напряжении помимо напряжения с основной частотой имеются составляющие с кратными частотами и с частотой промышленной сети. Реальный мост переменного тока, питающийся таким напряжением, полностью сбалансировать трудно вследствие наличия
несбалансированных составляющих с частотами, отличными от основной.
Для уменьшения погрешности, обусловленной остаточным разбалансом моста, используется фазочувствительный выпрямитель. Его средний выходной ток
где U - подаваемое на вход напряжение;
- фазовый угол между измеряемым и управляющим напряжением;
к - коэффициент пропорциональности, зависящий от параметров выпрямителя.
Прибор проектируется так, чтобы напряжение разбаланса моста, вызванное перемещением якоря преобразователя, было в фазе с управляющим напряжением, а напряжение, вызванное плохим подбором сопротивлений, было сдвинуто на угол . При этом выходной ток выпрямителя будет определяться только перемещением якоря индуктивного преобразователя.
Фазочувствительный выпрямитель выпрямляет напряжение, имеющее ту же частоту, что и управляющее напряжение, и частоту его нечетных гармоник. Это значительно уменьшает аддитивную погрешность, вызванную наличием высших гармоник в напряжении питания моста.
Информация о работе Принцип действия и конструкция индуктивных приборов