Лекции по "Общей химии"

Автор работы: Пользователь скрыл имя, 12 Сентября 2013 в 23:16, курс лекций

Краткое описание

Основными классами неорганических соединений являются оксиды, кислоты, соли и основания.
Оксиды представляют собой соединения элементов с кислородом. Оксиды подразделяют на солеобразующие и несолеобразующие. Солеобразующие оксиды делят на основные (образуют соли с кислотами), кислотные (образуют соли с основаниями) и амфотерные (образуют соли как с кислотами, так и с основаниями). Основным оксидам отвечают основания, кислотным – кислоты, а амфотерным – гидраты, которые проявляют как кислотные, так и амфотерные свойства. Кислотные оксиды представляют собой ангидриды кислот (SO2 – серный ангидрид, N2O5 – азотный ангидрид).

Содержание

Основные классы химических соединений, номенклатура.
3
Основные законы общей химии. Стехиометрия. Химический эквивалент.
5
Газовые законы. Основные газовые процессы.
7
Строение атома.
9
Строение атома (заключение). Химическая связь. Основные типы химической связи.
12
Периодический закон и периодическая система элементов Д.И. Менделеева.
16
Основы термодинамики. I,II и III начало термодинамики.
18
Основы термодинамических расчетов.
21
Химическая кинетика и химическое равновесие.
23
Теория электролитической диссоциации. Электролиты.
26
Водородный показатель кислотности и щелочности водных растворов. Растворимость.
28
Гидролиз солей.
32
Окислительно-восстановительные реакции.
34
Растворы. Способы выражения их концентрации.
37
Классификация растворов. Коллигативные свойства растворов.
40
Основы химии промышленных взрывчатых веществ.
42
Расчеты кислородных балансов ВВ и тепловых эффектов реакций взрыва.
45

Прикрепленные файлы: 1 файл

Химия лекции.doc

— 578.50 Кб (Скачать документ)

Расчет энергетических величин и выражения первого  закона термодинамики для предельных процессов идеального газа

Наименование  процессов

Характеристика

Соотношение 

параметров

DU

Q

W

Выражение для первого закона термодинамики

Изохорный

V=const

Р/T=const

nCv (T2-T1)                  

nCv(T2-T1)

0

Q=DU

Изобарный

Р=const

V/T=const

nCv  (T2 - T1)  

nCp(T2-T1)

nR(T2-T1)

Q=DU+W

Изотермический

T=const

PV=const

0

nRTln(P1/P2)

nRTln(V2/V1)

nRTln(P1/P2)   

nRTln(V2/V1)

Q=W

Адиабатический

Q = 0

PgV=const                                 

TVg-1=const             

TgP1-g =const

nCv(T2-T1)                

-[( 1/g-1)´                   

´(P2V2-P2 V2)]        

0

-nCv(T2-T1)             -[(1/g-1)´         ´(P2V2-P2V2)]        

W=-DU


Лекция №9: Химическая кинетика и химическое равновесие.

 

Химическая кинетика – это раздел химии, изучающий скорости химических реакций. Химические реакции могут протекать с различными скоростями (от малых долей секунды до десятилетий и более продолжительных временных интервалов). При рассмотрении вопроса о скорости реакций необходимо различать гомогенные и гетерогенные реакции. Гомогенные системы состоят из одной фазы (например, любая газовая смесь), а гетерогенные – из нескольких фаз (например, вода со льдом). Фазой является часть системы, отделённая от других её частей поверхностью раздела, при переходе через которую происходит скачкообразное изменение свойств.

Скорость гомогенной реакции – это количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объёма системы. Скоростью гетерогенной реакции является количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени на единице поверхности фазы (или массы, объёма твердой фазы, когда затруднительно определение велечины поверхности твёрдого тела):

vгомог= ; vгетерог= . Т.е. скорость гомогенной реакции можно определить как изменение концентрации какого-либо из веществ, вступающих в реакцию или образующихся при реакции, протекающее за единицу времени.

Большинство химических реакций являются обратимыми, то есть могут протекать как в прямом, так и в обратном направлениях. Рассмотрим обратимую реакцию:

aA+bB=cC+dD

Скорости прямой и обратной реакций связаны с концентрациями реагентов следующими уравнениями: 

vх.р, пр=kпр[A]a×[B]b и vх.р. обр=kобр[C]c×[D]d

С течением времени скорость прямой реакции будет уменьшаться  вследствие расхода реагентов А и В и понижения их концентраций. Напротив, скорость обратной реакции по мере накопления продуктов С и D будет возрастать. Поэтому через некоторый промежуток времени скорости прямой и обратной реакций сравняются друг с другом. Установится состояние системы, в котором отсутствуют потоки вещества и энергии, называемое химическим равновесием. Все обратимые процессы протекают не полностью, а лишь до состояния равновесия, в котором из условия vх.р. пр = vх.р. обр следует:

kпр/kобр=[C]c×[D]d/ [A]a×[B]b=K

 

где K - константа химического равновесия, которая зависит от температуры и природы реагентов, но не зависит от концентрации последних. Это математическое выражение закона действующих масс, который позволяет рассчитывать состав равновесной реакционной смеси.

Важнейшими факторами, влияющими на скорость реакции, являются:

1. Природа реагирующих  веществ;

2. Концентрации реагирующих  веществ;

3. Температурный фактор;

4. Наличие катализаторов.

В некоторых случаях  скорость гетерогенных реакций зависит  также от интенсивности движения жидкости или газа вблизи поверхности, на которой реализуется реакция.

1) Влияние концентрации  реагирующих веществ. Представим уравнение химической реакции в общем виде: аА+bB+…=, тогда vх.р.=k[A]a[B]b – это, по сути, математическая запись закона действующих масс, открытого опытным путём К. Гульдбергом и П. Вааге в 1864-1867 гг. Согласно указанному закону, при неизменной температуре vх.р пропорциональна произведению концентраций реагирующих веществ, причём каждая концентрация входит в произведение в степени, равной коэффициенту, стоящему перед формулой данного вещества в уравнении реакции. Величина константы скорости реакции (k) зависит от природы реагирующих веществ, температуры и наличия катализаторов, но не зависит от концентрации веществ.

2) Зависимость vх.р. от температуры и от природы реагирующих веществ. Энергией активации Еа (в кДж/моль) называют избыточную энергию, которой должны обладать молекулы для того, чтобы их столкновение могло привести к образованию нового вещества. Еа различных реакций различна. Посредством этого фактора сказывается влияние природы реагирующих веществ на vх.р.. Если Еа<40 кДж/моль (т.е. мала), то скорость такой реакции велика (например, ионные реакции в растворах, протекающие практически мгновенно). Если Еа>120 кДж/моль (т.е. очень значительна), то скорость такой реакции незначительна (например, реакция синтеза аммиака N2+3H2=2NH3 – скорость этой реакции при обычных Т вследствии высоких значений Еа настолько мала, что заметить её протекание практически невозможно).

В 1889 г. знаменитый шведский химик Аррениус вывел из опытных данных уравнение, связывающее константу скорости с температурой и энергией активации. Позднее это уравнение получило теоретическое обоснование. Согласно Аррениусу, константа скорости находится в экспоненциальной зависимости от температуры: k=kmax×exp(-Ea/RT), где R - универсальная газовая постоянная, равная 8,31 Дж/моль×К; kmax - предэкспоненциальный фактор, имеющий смысл максимально возможного значения константы скорости при нулевой энергии активации или бесконечно высокой температуре, когда все столкновения молекул реагентов становятся активными. Уравнение Аррениуса используют чаще в логарифмической форме: lnk=lnkmax-Ea/RT.

Возрастание vх.р. с ростом температуры обычно характеризуют температурным коэффициентом скорости реакции – величиной, показывающей, во сколько раз возрастает скорость рассматриваемой реакции при повышении температуры системы на 10 градусов. Температурный коэффициент (g) для разных реакций различен. При обычных температурах его значение для большинства реакций лежит в пределах от 2 до 4 (т.е. gх.р.=2-4 раза).

Катализаторами являются вещества, не расходующиеся в реакции, но оказывающие влияние на её скорость. Явление изменения скорости реакции под действием катализаторов называется катализом, а сами эти реакции являются каталитическими. Действие катализатора обусловлено снижением активационного предела химического взаимодействия, т.е. снижением величины энергии активации. Под воздействием катализаторов реакции могут ускоряться в миллионы и более раз. Более того, некоторые реакции без катализаторов вообще не реализуются. Катализаторы широко используются в промышленности.

Различают гомогенный и гетерогенный катализ. При гомогенном катализе катализатор и реагенты образуют одну фазу (газ или раствор), а при гетерогенном катализе – катализатор находится в системе в виде самостоятельной фазы. Примером гомогенного катализа служит разложение перекиси водорода на воду и кислород в присутствии катализаторов Cr2O72-, WO42- и др. Примером гетерогенного катализа является окисление диоксида серы в триоксид при контактном способе получения серной кислоты из отходящих газов металлургических производств: SO2+0,5O2+H2O=(kt)=H2SO4.

 

Химическое  равновесие. Принцип Ле Шателье

Если система находится в  равновесии, то она будет находиться в нём до тех пор, пока внешние условия сохранятся постоянными. На практике зачастую бывает важно добиться максимально возможного смещения равновесия в сторону прямой реакции (или обратной, если требуется подавить образование вредных веществ). Условия для этого выбирают на основе принципа, сформулированного известным французским учёным. Этот принцип, названный в честь французского химика Анри Луи Ле Шателье, можно сформулировать следующим образом: если на систему, находящуюся в равновесии, производится какое либо внешнее воздействие (изменяется концентрация, температура, давление), то равновесие смещается в том направлении, которое способствует ослаблению этого воздействия.

Влияние концентрации. Если увеличить концентрацию исходных веществ, то система будет стремиться быстрее их израсходовать, то есть сместится в сторону образования продуктов. И, наоборот, если в системе увеличить концентрацию продуктов, то система сместится в сторону исходных веществ.

Влияние давления. Изменение давления наиболее существенно в случае реакций, протекающих с изменением числа моль газообразных веществ.

При увеличении общего давления равновесие смещается таким образом, что  общее давление снижается, то есть, смещается в направлении той  реакции, которая протекает с уменьшением числа моль газообразных веществ.

Рассмотрим  применение принципа Ле Шателье на примере реакции образования  аммиака.

N2(gas) + ЗН2(gas) = 2NН3(gas)

Если: а) уменьшить концентрации исходных веществ N2 и Н2 б) увеличить давление равновесной смеси (сжать), то:

а) Уменьшение концентрации исходных веществ N2 и Н2 приведет к смещению равновесия справа налево, в результате концентрации N2 и Н2 вновь увеличатся за счет разложения аммиака.

б) Увеличение давления системы приведет к смещению равновесия слева направо, то есть в направлении реакции синтеза аммиака, при этом число моль газообразных веществ уменьшится (из 4-х моль исходных веществ образуется 2 моль продуктов), а соответственно уменьшится и общее давление системы.

Повышение температуры будет способствовать протеканию эндотермической реакции, идущей с поглощением тепла; понижение температуры будет способствовать протеканию экзотермической реакции, идущей с выделением тепла (DH < 0). Например, уменьшение температуры сместит равновесие реакции N22=2NO (ΔН0=-180 кДж/моль) справа налево, то есть в направлении экзотермической реакции, идущей с выделением тепла. Температура системы в результате повысится.

Влияние катализатора. Катализаторы одинаково ускоряют как прямую, так и обратную реакцию, и поэтому не смещают химическое равновесие. Они способствуют более быстрому достижению равновесного состояния.

 

Лекция №10: Теория электролитической диссоциации. Электролиты.

 

Электролитами являются вещества, которые способны проводить электрический ток в растворах или расплавах. Электролиты можно классифицировать как проводники II рода. Они представляют собой вещества, распадающиеся в растворах или расплавах на ионы. Электролитами могут быть соли, кислоты и основания. Сам процесс диссоциации молекул слабых электролитов на ионы является обратимым.

Предположение Сванте Аррениуса  о том, что причиной крайне высокого осмотического давления растворов  электролитов является диссоциация  этих электролитов на ионы, в дальнейшем было положено в основу теории электролитической диссоциации. В соответствии с этой теорией, растворяясь в воде, электролиты распадаются или диссоциируют на «+»-но и «-»-но заряженные ионы (катионы и анионы). Примеры: катионы – ионы водорода и металлов; анионы – ионы кислотных остатков и гидроксогруппы. Процесс электролитической диссоциации можно показать при помощи химических уравнений: НCl=H++Cl-. Отклонение от законов Вант-Гоффа и Рауля объяснимо распадом электролитов на ионы.

Однако теория Аррениуса  не учитывала всей сложности явлений  в растворах. Ей противостояла химическая, или гидратная теория растворов Д.И. Менделеева, которая базировалась на представлении о взаимодействии растворенного вещества с растворителем. Преодолеть это, на первый взгляд, противоречие двух теорий позволило предположение о гидратации ионов, впервые сделанное И.А. Каблуковым в работе «Современные теории растворов в связи с учением о химическом равновесии». Это позволило в дальнейшем объединить две указанные теории в единую.

Пусть концентрация электролита, распадающегося на 2 иона, равна С, а степень его диссоциации в данном растворе составляет a, тогда уравнение для константы диссоциации примет вид:

Кдис= , где сa - концентрация каждого из ионов, а с(1-a) – концентрация недиссоциированных молекул.

Это уравнение представляет собой закон разбавления Оствальда. Оно позволяет определять степень диссоциации при разных концентрациях электролита, если определена его константа диссоциации; также константу диссоциации электролита, если известна его степень диссоциации при какой-либо концентрации.

Для растворов, в которых  диссоциация электролита очень  мала, уравнение закона Оствальда  можно упростить. В данном случае a<<1, и, следовательно, этой величиной можно пренебречь в знаменателе правой части уравнения. Тогда это уравнение примет следующий вид:

Кдис@a2·с или a=

.

Таким образом, степень  диссоциации возрастает при разбавлении  раствора.

Величина Кдис электролита зависит от природы электролита и растворителя, температуры, но не зависит от концентрации раствора. Она характеризует способность электролита распадаться на ионы. Чем меньше Кдис электролита, тем слабее электролит. Значения Кдис различных электролитов приводятся в справочниках при Т=298К.

 

Электролит

Константа диссоциации Кдис (при 25°С)

HNO2

4·10-4

H2O2

К1=10-12 к2=10-25

H2SiO3

К1=10-10 к2=10-22

H2SO3

К1=2·10-2 к2=10-14

H2S

К1=6·10-8 к2=10-14

CH3COOH

1,74·10-5

HCOOH

1,8·10-4

H2CO3

К1=4,5·10-7 к2=4,7·10-11

NH4OH

1,8·10-5

HF

7·10-4

Информация о работе Лекции по "Общей химии"