История развития представлений и радиологии

Автор работы: Пользователь скрыл имя, 03 Февраля 2014 в 19:56, реферат

Краткое описание

Радиобиология – наука об излучениях (от латинского “радио” – излучаю). Термин медицинская радибиология обозначает учение о действии ионизирующего излучения на организм человека. Несмотря на то, что позитивные процессы постепенно завоевывают позиции на мировой арене, положение в мире остается сложным и непредсказуемым. Угроза развязывания вооруженных конфликтов с возможным применением современных средств поражения, в т.ч. оружия массового поражения сохраняется.

Прикрепленные файлы: 1 файл

воен.docx

— 202.74 Кб (Скачать документ)

Во взрослом организме, в  соответствии с правилом Бергонье и Трибон-до, непролиферирующие высокодифференцированные нервные клетки высокорадиорезистентны. Однако это относится лишь к морфологическим проявлениям повреждения. Функциональные же реакции нейронов обнаруживаются в ответ на облучение уже в ничтожных дозах. Так, ранние изменения электроэнцефалограммы появляются после облучения в дозе 0,5 мГр; облучение в дозе 1 мГр вызывает заметное удлинение времени рефлекса в ответ на электрораздражение. Спящие крысы просыпаются в результате облучения в дозе 0,01—0,02 Гр. Волны электрической активности в переживающих in vitro нервных клетках вызывает облучение в дозе 0,01 Гр. Все это говорит о высокой реактивности элементов нервной системы по отношению к радиационным воздействиям.

Можно заключить, что термин «радиочувствительность» в его  обычном употреблении не очень удачен. Казалось бы, логичнее, как это предлагал в свое время видный патофизиолог и радиобиолог П. Д. Горизонтов, понимать под радиочувствительностью количественное выражение любых форм реакции биологического объекта на облучение, а не только повреждения. Если бы это предложение утвердилось, нервную ткань называли бы наиболее радиочувствительной. Однако в радиобиологии термин радиочувствительность применяется чаще всего как синоним радио-поражаемости.

16.4.1. Радиационное поражение  системы крови

Система крови относится  к числу систем клеточного обновления, функционирование которых обеспечивает поддержание постоянного числа функциональных клеток, обладающих короткой продолжительностью жизни..

Послелучевые изменения, происходящие в системе клеточного обновления, будут рассмотрены на примере гранулоцитопоэза.

Одним из важных эффектов является приостановка клеточного деления (блок митозов), которая тем продолжительнее, чем выше доза облучения.

По выходе из блока часть  клеток, в которых повреждения  ядерной ДНК не были репарированы, подвергается репродуктивной гибели. Часть клеток погибает по интерфазному типу. С повышением дозы число погибающих клеток увеличивается. Наиболее радиочувствительны клетки стволового отдела (Do составляет около 1 Гр), и по критерию утраты способности к образованию колоний дочерних клеток число стволовых клеток резко снижается практически сразу после облучения. Высокой радиочувствительностью обладают и клетки пула пролиферации. Что же касается клеток пула созревания, то их радиочувствительность сравнительно невысока, большинство этих клеток сохраняют жизнеспособность, созревают и выходят в периферическую кровь. В результате количество клеток в костном мозге, а затем и в периферической крови довольно быстро убывает. Вначале снижается число наиболее молодых, наиболее радиочувствительных клеток. Затем процесс опустошения захватывает все более и более зрелые отделы, так как созревание и выход в кровь созревших клеток продолжаются, а восполнения их числа за счет поступления из пролиферативного пула нет. Наконец, и в периферической крови развивается гранулоцитопения.

. Схема развития опустошения  в системе клеточного обновления  после облучения в высокой  дозе (по В. Бонду и соавт., 1971) 

На ход кривой содержания в крови гранулоцитов влияют и  другие факторы. Так, в ближайшие  часы после облучения обнаруживается ранний нейтрофильный лейкоцитоз перераспределительного характера — неспецифическая реакция, наблюдаемая при воздействии и других раздражителей. Важное значение имеет так называемый абортивный подъем числа нейтрофилов, наблюдающийся у человека с середины 2-й нед после облучения и сменяющийся еще более глубоким снижением количества этих клеток. Абортивный подъем объясняют возобновлением (после выхода из митотического блока) пролиферации клеток, способных к ограниченному числу делений, что обеспечивает лишь временное увеличение числа зрелых нейтрофилов. Однако и оно оказывается полезным, сокращая период глубокой нейтропении.

В клетках периферической крови облученных обнаруживаются морфологические и цитохимические изменения, что свидетельствует о их неполной функциональной полноценности. Однако в основном клетки крови после облучения в дозах несколько грей (при острой лучевой болезни) выполняют свои функции удовлетворительно, и главной причиной клинических нарушений, связанных с поражением кроветворения, являются не качественные изменения в клетках, а уменьшение их количества.

Начало снижения содержания в крови отдельных видов функциональных клеток после облучения и срок, когда глубина этого снижения максимальна, зависят главным образом от времени, в течение которого клетки-предшественники находятся в составе пулов пролиферации, созревания, а также от продолжительности циркуляции в крови созревших клеток. Эти параметры различны как для разных клеточных линий, так и для разных видов животных. У человека прохождение предшественников гранулоцитов через пул пролиферации занимает 4-6 дней и примерно столько же времени — прохождение через пул созревания. Зрелые гранулоциты циркулируют в крови в среднем всего 8-10 ч.

В соответствии с названными сроками нейтропения у человека начинает обнаруживаться примерно через 5 сут после облучения. Продолжительность пребывания в крови человека тромбоцитов оценивается в 6-8 дней и минимальный их уровень достигается через 2—2,5 нед.

Длительность жизни эритроцитов  в крови составляет 100-120 дней. Поражение  зрелых эритроцитов после облучения  в дозах, составляющих несколько грей, невелико и поэтому даже в случае полного прекращения продукции новых эритроцитов их число в сутки может снизиться примерно на 1% и анемия развивается очень медленно (если не возникнет кровотечения).

Продолжительность блока  митозов зависит от дозы облучения  и составляет от нескольких часов до суток, редко более. После выхода из блока сохранившие жизнеспособность стволовые клетки возобновляют пролиферацию, создавая тем самым основу для восстановления морфологического состава костного мозга, а затем и крови. Это восстановление числа стволовых кроветворных клеток можно наблюдать уже тогда, когда в крови только еще начался процесс опустошения. Однако, чтобы процесс восстановления в стволовом отделе реализовался увеличением числа зрелых функциональных клеток, необходимо время как для восстановления достаточного числа самих стволовых клеток, так и для прохождения клеток через пулы деления и созревания.

Выраженность цитопении (т. е. глубина, время достижения и продолжительность снижения содержания в крови клеток) нарастает с увеличением дозы облучения.

Поражение кроветворения  и связанные с ним клинические  проявления, в первую очередь инфекционные осложнения и повышенная кровоточивость, получили наименование костномозгового синдрома, который лежит в основе одноименной формы ОЛБ, развивающейся после облучения в дозах 1—10 Гр.

2. Радиационное поражение  органов желудочно-кишечного тракта

При общем облучении среди  органов желудочно-кишечного тракта наиболее значимо поражение эпителия слизистой оболочки тонкой кишки, который является принципиально такой же системой клеточного обновления, как и костный мозг. Но если в костном мозге клетки разной степени созревания располагаются без видимого порядка, в слизистой оболочке кишки взаимное расположение клеток, относящихся к разным пулам, четко разграничено.

На дне крипт находятся  стволовые клетки. По мере деления  стволовых клеток и последующего их созревания клетки продвигаются по направлению к устью крипт и далее по стенке ворсинки к ее верхушке, откуда слущиваются в просвет кишки. Утрата клеток с ворсинок сбалансирована притоком вновь образованных клеток из крипт. Продвижение клетки от дна крипты до верхушки ворсинки занимает около 4 сут.

Как и в других системах клеточного обновления, в эпителии кишки после облучения наступает  временный блок митозов, погибают прежде всего стволовые и другие делящиеся клетки. Созревающие и функциональные клетки, будучи радиорезистентны (Do составляет 15 Гр), после облучения продолжают продвижение к верхушкам ворсинок и слущиваются. Эпителиальная выстилка кишки при отсутствии пополнения за счет клеточного деления быстро исчезает, ворсинки «оголяются» и уплощаются.

Стволовые энтероциты менее чувствительны к гамма- и рентгеновскому облучению, чем стволовые кроветворные клетки, вследствие более высокой активности в них систем внутриклеточной репарации повреждений ДНК: Dдля стволовых клеток составляет в костном мозге величину менее 1 Гр, а в эпителии тонкой кишки — порядка 4 Гр. Поэтому опасное для жизни повреждение эпителия кишки происходит при более высоких дозах (порядка 10 Гр), чем дозы, достаточные для глубокого повреждения костного мозга (4-5 Гр). В случаях, когда доза общего облучения достигает величины, при которой повреждение кишки становится несовместимым с сохранением жизни организма, патологический процесс развивается очень быстро и уже к концу 3-5-х сут происходит полная денудация слизистой оболочки. Несовместимая с жизнью панцитопения в крови развивается значительно позднее.

Если в ранние сроки  не наступит смертельного исхода, сохранившиеся стволовые клетки эпителия кишки обеспечивают его быструю регенерацию, восстановление структуры и функции кишечной стенки.

Описанные изменения слизистой  оболочки тонкой кишки, достигающие в случае общего облучения максимальной выраженности при дозах, превышающих 10 Гр, лежат в основе развития так называемого кишечного синдрома.

Другие отделы желудочно-кишечного  тракта менее радиочувствительны, чем тонкая кишка, и их повреждение при общем облучении чаще всего не имеет самостоятельного значения.

Во всех отделах желудочно-кишечного  тракта после общего облучения в дозах, не доходящих до уровня, при котором типичным является развитие кишечного синдрома, могут наблюдаться эрозии, изъязвления, местные некрозы вплоть до перфорации кишечной стенки. Чаще всего возникновение этих проявлений связано с развитием вторичной инфекции и геморрагии на почве костномозгового синдрома. В практическом отношении наиболее важны некротическая энтеропатия и орофарингеальный синдром.

При местном облучении  области живота в достаточно высоких  дозах возможно возникновение некрозов и изъязвлений участков желудочно-кишечного тракта, подвергшихся воздействию.

3. Лучевое поражение центральной  нервной системы

Выраженные морфологические  проявления поражения клеток центральной нервной системы наблюдаются, как правило, только после воздействия в дозах, приближающихся к 50 Гр и выше. Наиболее ранние изменения обнаруживаются в синапсах (слипание синаптических пузырьков в скоплениях, появляющихся в центральной части пресинаптических терминалов или в активной зоне). При световой микроскопии через 2 ч после облучения в таких дозах обнаруживается набухание клеток, пикноз ядер зернистых клеток мозжечка, реже — других нейронов, явления васкулита, менингита, хориоидального плексита с гранулоцитарной инфильтрацией. Максимум изменений приходится на 1-е сут после облучения. При более высоких дозах может наблюдаться ранний некроз ткани мозга.

При облучении в дозах 10-30 Гр в клетках центральной нервной  системы обнаруживают угнетение окислительного фосфорилирования. Последнее связывают с дефицитом АТФ, расходуемого в процессе репарации вызванных облучением разрывов ДНК. Развиваются очаги так называемого реактивного состояния нервных клеток: набухание нейронов, повышение аргирофильности. При этом погибают, как правило, лишь отдельные нейроны. Распространенные очаговые изменения в вегетативных ганглиях могут явиться одной из причин дискоординации функций внутренних органов.

Отмеченные изменения  в нервных клетках неспецифичны для лучевого поражения и наблюдаются при действии некоторых токсических факторов. В значительной мере изменения нервных структур вторичны, т. е. являются следствием изменений в других системах в ходе развития лучевого поражения (токсемия, инфекционный процесс).

Уже отмечалась способность  нервных клеток отвечать функциональными реакциями на воздействие даже малых доз облучения. К этому следует добавить, что на функции нервной системы могут повлиять и обильная патологическая афферентная импульсация из поврежденных радиочувствительных тканей, и токсические влияния продуктов клеточного распада, эндотоксинов, проникающих во внутреннюю среду из кишки, и т. п.

В ходе лучевой болезни  выявляются изменения биоэлектрической активности коры головного мозга, в эксперименте регистрируются расстройства условнорефлекторной деятельности, особенно резко выраженные в терминальном периоде.

Расстройства нервной  системы могут проявляться и  непосредственными клиническими симптомами, как, например, при остром пострадиационном ЦНС-синдроме, при первичной реакции на облучение, которые будут рассмотрены позднее, и нарушениями регуляции вегетативных функций, процессов восстановления поврежденных тканей.

После облучения в дозах  порядка нескольких десятков Грей нарушения функций центральной нервной системы лежат в основе развития церебральных нарушений, определяющих клиническую картину поражения организма.

Таким образом, хотя радиочувствительность  нейронов и невысока, нарушения функций нервной системы могут иметь существенное значение для развития лучевого поражения.

 

 
ФАКТОРЫ, ВЫЗЫВАЮЩИЕ ПОРАЖЕНИЯ ЛИЧНОГО СОСТАВА ВОЙСК  ПРИ ЯДЕРНЫХ ВЗРЫВАХ И РАДИАЦИОННЫХ АВАРИЯХ. 

В случае применения ядерного оружия или крупномасштабных аварий на объектах ядерной энергетики на личный состав войск могут действовать  различные виды ИИ, неблагоприятные  факторы нелучевой природы, а также их комбинации. При ядерных взрывах именно эти воздействия выводят из строя личный состав войск, поэтому наиболее важные из них называются поражающими факторами ядерного взрыва.

1. Поражающие факторы ядерного  взрыва

К числу поражающих факторов ядерного взрыва относятся ударная  волна, световое излучение, проникающая радиация, радиоактивное заражение местности (РЗМ) и электромагнитный импульс. Прямым поражающим действием на организм человека обладают первые четыре фактора; электромагнитный импульс вызывает повреждения электронных и электротехнических устройств. По продолжительности действия различают кратковременно действующие поражающие факторы ядерного взрыва (ударная волна, световое излучение и проникающая радиация) и длительно действующий фактор — РЗМ. По физической природе поражающие факторы ядерного взрыва могут быть радиационными либо нерадиационными.

1.1. Радиационные поражающие  факторы ядерного взрыва

Радиационными факторами  ядерного взрыва являются проникающая  радиация и радиоактивное заражение местности (РЗМ).

Информация о работе История развития представлений и радиологии