Общие сведения о насосах

Автор работы: Пользователь скрыл имя, 26 Января 2014 в 20:27, реферат

Краткое описание

Насосами называются машины, предназначенные для создания потока (перемещения) жидкости. Насосы применяются во всех отраслях промышленности, в сельском и коммунальном хозяйстве,. на транспорте. Они находят применение не только как самостоятельные машины или агрегаты, но и как узлы сложных машин и установок: станков, энергетических устройств, транспортных машин и т. п.

Прикрепленные файлы: 1 файл

Общие сведения о насосах.docx

— 388.06 Кб (Скачать документ)

Рис. 1. Конструкция дренажной  насосной установки (а) и ее электрическая  схема автоматизации (б)

На рис. 2 приведена схема автоматизации управления погружным насосом по уровню воды в баке водонапорной башни, реализованная на релейно-контактных элементах.

Рис. 2. Принципиальная электрическая  схема автоматизации погружным  насосом по уровню воды в баке- водонапорной башни

Режим работы схемы автоматизации  насосом задается переключателем SА1. При установке его в положение «А» и включении автоматического выключателя QF подается напряжение на электрическую схему управления. Если уровень воды в напорном баке находится ниже электрода нижнего уровня датчика ДУ, то контакты SL1 и SL2 в схеме разомкнуты, реле КV1 обесточено и его контакты в цепи катушки магнитного пускателя КМ замкнуты. В этом случае магнитный пускатель включит электродвигатель насоса, одновременно погаснет сигнальная лампа НL1 и загорится лампа НL2. Насос будет подавать воду в напорный бак.

Когда вода заполнит пространство между  электродом нижнего уровня SL2 и корпусом датчика, подключенным к нулевому проводу, цепь SL2 замкнется, но реле KV1 не включится, так как его контакты, включенные последовательно с SL2, разомкнуты.

Когда вода достигнет электрода  верхнего уровня, цепь SL1 замкнется, реле КV1 включится и, разомкнув свои контакты в цепи катушки магнитного пускателя КМ, отключит последний, а замкнув замыкающие контакты, станет на самопитание через цепь датчика SL2. Электродвигатель насоса отключится, погаснет сигнальная лампа НL2 и загорится лампа НL1. Повторное включение электродвигателя насоса произойдет при понижении уровня воды до положения, когда разомкнётся цепь SL2 и реле КV1 будет отключено.

Включение насоса в любом режиме возможно только в том случае, если замкнута цепь датчика «сухого хода»  ДСХ (SL3), контролирующего уровень воды в скважине.

Основным недостатком управления по уровню является подверженность обмерзанию электродов датчиков уровня в зимнее время, из-за чего насос не выключается  и происходит переливание воды из бака. Бывают случаи разрушения водонапорных башен из-за намерзания большой массы льда на их поверхности.

При управлении работой насоса по давлению электроконтактный манометр или реле давления можно смонтировать на напорном трубопроводе в помещении насосной. Это облегчает обслуживание датчиков и исключает воздействие низких температур.

На рис. 3 приведена принципиальная электрическая схема управления башенной водоснабжающей (насосной) установкой по сигналам электроконтактного манометра (по давлению).

Рис. 3. Принципиальная электрическая  схема управления башенной водоснабжающей установкой от электроконтактного манометра

При отсутствии воды в баке контакт  манометра SР1 (нижний уровень) замкнут, а контакт SР2 (верхний уровень) разомкнут. Реле КV1 срабатывает, замыкая контакты КV1.1 и КV1.2, в результате чего включается магнитный пускатель КМ, который подключает электронасос к трехфазной сети (на схеме силовые цепи не показаны).

Насос подает воду в бак, давление растет до замыкания контакта манометра  SР2, настроенного на верхний уровень воды. После замыкания контакта SР2 срабатывает реле КV2, которое размыкает контакты КV2.2 в цепи катушки реле КV1 и КV2.1 в цепи катушки магнитного пускателя КМ; электродвигатель насоса отключается.

При расходе воды из бака давление снижается, SР2 размыкается, отключая КV2, но включение насоса не происходит, так как контакт манометра SР1 разомкнут и катушка реле КV1 обесточена. Таким образом, включение насоса происходит, когда уровень воды в баке снизится до замыкания контакта манометра SР1.

Питание цепей управления производится через понижающий трансформатор  напряжением 12 В, что повышает безопасность обслуживания схемы управления и  электроконтактного манометра.

Для обеспечения работы насоса при  неисправности электроконтактного манометра или схемы управления предназначен тумблер SА1. При его включении шунтируются управляющие контакты КV1.2, КV2.1 и катушка магнитного пускателя КМ непосредственно подключается к сети напряжением 380 В.

В разрыв фазы L1 в цепь управления включен контакт РОФ (реле обрыва фазы), который размыкается при неполнофазном или несимметричном режиме питающей сети. В этом случае цепь катушки КМ разрывается и насос автоматически отключается до устранения повреждения.

Защита силовых цепей в данной схеме от перегрузок и коротких замыканий  осуществляется автоматическим выключателем.

На рис. 4 приведена схема автоматизации водонасосной установки, которая содержит электронасосный агрегат 7 погружного типа, размещенный в скважине 6. В напорном трубопроводе установлены обратный клапан 5 и расходомер 4.

Насосная установка имеет напорный бак 1 (водонапорная башня или воздущно-водяной котел) и датчики давления (или уровня) 2, 3, причем датчик 2 реагирует на верхнее давление (уровень) в баке, а датчик 3 — на нижнее давление (уровень) в баке. Управление насосной станцией обеспечивает блок управления 8.

Рис. 4. Схема автоматизации  водонасосной установки с частотно-регулируемым электроприводом

Управление насосной установкой происходит следующим образом. Предположим, что  насосный агрегат отключен, а давление в напорном баке уменьшается и  становится ниже Рmin. В этом случае от датчика поступает сигнал на включение электронасосного агрегата. Происходит его запуск путем плавного увеличения частоты f тока, питающего электродвигатель насосного агрегата.

Когда частота вращения насосного  агрегата достигнет заданного значения, насос выйдет на рабочий режим. Программированием  режима работы частотного преобразователя можно обеспечить нужную интенсивность разбега насоса, его плавный пуск иостанов.

Применение регулируемого электропривода погружного насоса позволяет реализовать  прямоточные системы водоснабжения  с автоматическим поддержанием давления в водопроводной сети.

Станция управления, обеспечивающая плавный пуск и останов электронасоса, автоматическое поддержание давления в трубопроводе, содержит преобразователь  частоты А1, датчик давления ВР1, электронное  реле А2, схему управления и вспомогательные  элементы, повышающие надежность работы электронного оборудования (рис. 5).

Схема управления насосом  и преобразователь частоты обеспечивают выполнение следующих функций:

- плавный пуск и торможение  насоса;

- автоматическое управление по  уровню или давлению;

- защиту от «сухого хода»; 

- автоматическое отключение электронасоса  при неполнофазном режиме, недопустимом снижении напряжения, при аварии в водопроводной сети;

- защиту от перенапряжений на  входе преобразователя частоты  А1;

- сигнализацию о включении и  выключении насоса, а также об  аварийных режимах; 

- обогрев шкафа управления при  отрицательных температурах в  помещении насосной.

Плавный пуск и плавное торможение насоса осуществляют с помощью преобразователя  частоты А1 типа FR-Е-5,5к-540ЕС.

Рис. 5. Принципиальная электрическая  схема автоматизации погружным  насосом с устройством плавного пуска и автоматического поддержания  давления

Электродвигатель погружного насоса подключается к выводам U, V и W преобразователя частоты. При нажатии кнопки SВ2 «Пуск» срабатывает реле К1, контакт которого К1.1 соединяет входы STF и РС преобразователя частоты, обеспечивая плавный пуск электронасоса по программе, заданной при настройке частотного преобразователя.

При аварии частотного преобразователя  или цепей электродвигателя насоса замыкается цепь А-С преобразователя, обеспечивая срабатывание реле К2. После  срабатывания К2 замыкаются его контакты К2.1, К2.2, а контакт К2.1 в цепи К1 размыкается. Происходит отключение выхода частотного преобразователя и реле К2. Повторное включение схемы  возможно только после устранения аварии и сброса защиты кнопкой 8В3.1.

Датчик давления ВР1 с аналоговым выходом 4...20 мА подключен к аналоговому  входу частотного преобразователя (контакты 4, 5), обеспечивая отрицательную  обратную связь в системе стабилизации давления.

Функционирование системы стабилизации обеспечивается ПИД-регулятором преобразователя  частоты. Требуемое давление задается потенциометром К1 или с пульта управления частотного преобразователя. При «сухом ходе» насоса в цепи катушки реле КЗ замыкается контакт 7-8 электронного реле сопротивления А2, к контактам которого 3-4 подключен датчик «сухого хода».

После срабатывания реле КЗ замыкаются его контакты К3.1 и КЗ.2, в результате чего срабатывает реле защиты К2, обеспечивая  отключение электродвигателя насоса. Реле КЗ при этом становится на самопитание через контакт К3.1.

При всех аварийных режимах зажигается лампа НL1; лампа НL2 зажигается при  недопустимом снижении уровня воды (при  «сухом ходе» насоса). Подогрев шкафа  управления в холодное время года осуществляется с помощью электронагревателей  ЕК1...ЕК4, которые включаются контактором  КМ1 при срабатывании термореле ВК1. Защита входных цепей преобразователя  частоты от коротких замыканий и  перегрузок осуществляется автоматическим выключателем QF1.

 
Рис. 5. Автоматизация насосной установки

 

 
Автоматизация насосных станций водоотведения (КНС и ГКНС) и станций перекачки

На насосных станциях водоотведения  устанавливается группа насосных агрегатов, откачивающих жидкость из приемного  резервуара. Отличительной особенностью работы таких станций является установка  нескольких верхних и нижних уровней  в резервуаре, при достижении которых  изменяется число работающих агрегатов. С увеличением водопотребления  частота включений дополнительных насосов увеличивается, продолжительность  пауз уменьшается, так как быстрей  уменьшается объем жидкости в  резервуаре.

Автоматизация насосных станций водоотведения  применяется для управления в  автоматическом и ручном режимах  объектами водоотведения:

  • Канализационные насосные станции (КНС, ГКНС);
  • Ливневые насосные станции (ЛНС);
  • Станций перекачки на промышленных предприятиях и других похожих объектах.

Технологические функции

  • регулирование уровня стоков в резервуаре в автоматическом режиме;
  • групповое управление насосами;
  • резервирование технологических датчиков уровня в резервуаре. Одновременно возможно использование 4-х дискретных поплавков и аналогового датчика уровня. Дискретные и аналоговый датчики могут использоваться по отдельности;
  • выравнивание наработок в группах насосов (основные и пиковые);
  • выполнение тестовых прогонов для простаивающих насосов;
  • обеспечение бесперебойной работы системы без вмешательства человека;
  • управление выходной задвижкой (при необходимости);
  • возможность работы в ручном режиме.

Защитные функции

  • защита насосов по показаниям встроенных датчиков;
  • защита по электрическим характеристикам двигателя;
  • защита от сухого хода по датчику уровня и cos(f).

Информационные функции

  • защита от изменения параметров системы паролем;
  • ведение журнала событий;
  • ведение журнала изменения настроек;
  • визуализация текущего состояния станции и насоса;
  • визуализация аварийных ситуаций;
  • простой ввод в эксплуатацию с помощью встроенной процедуры «Мастер наладки».

Диспетчеризация, протоколы взаимодействия с системами верхнего уровня

  • Industrial Еthernet,
  • Modbus,
  • Industrial Ethernet ч/з ADSL,
  • Ethernet ч/з GPRS,
  • Profibus.

Масштабирование и Автоматизация сложных объектов

  • Возможность построения кластера для увеличения количества управляемых насосов, в т.ч. и разной мощности (до 24 насосов). Для построения кластера, т.е. насосной группы с количеством насосов больше 6 или состоящей из нескольких насосных групп, в т.ч. разной мощности используется кластер контроллер;
  • Вогласование работы насосной установки с узлами и агрегатами объекта. В системы автоматизации встроен исчерпывающий функционал позволяющий, использовать их в различных технологических процессах посредством протоколов взаимодействия с системами верхнего уровня. Например: Совместная работа насосов и вакуумных установок.

Таблица сводных технических характиристик

Тип регулирования станции

 Поддержание уровня стоков

Количество насосов

 От 1 до 6(более по специальному 
запросу)

Токи

 От 3 А до 1120 А(более по 
специальному запросу)

Мощность

 От 1 кВт до 630 кВт(более по 
специальному запросу)

Электроснабжение

380 В +/- 10%. 50 ГцМногофидерный ввод питания

Температура окружающей среды

0.. +40 С

Степень защиты

IP 54

Тип подключаемых аналоговых  датчиков

4-20 мА (пассивный)

Тип подключаемых датчиков защиты  насоса

  • Термистор РТС,
  • РТ 100,
  • биметалл,
  • электрод в камере мотора,
  • электрод в  камере уплотнений мотора, 
  • герметичность клеммной камеры,
  • поплавковый выключатель камеры  протечек,
  • контроль температуры  подшипника РТ100

Тип подключаемых дискретных  сигналов

“Сухой контакт”

Тип выходных дискретных сигналов  шкафа управления

“Сухой контакт” max 220В, 5А

Максимальное расстояние до  подключаемых датчиков

200 м.

Сечение подключаемых проводов к  датчикам

Не менее 0,75 кв.мм

Макс. длина кабеля от шкафа  управления до конечного шкафа  силовой коммутации

200 м

Макс. длина кабеля до двигателя без   выходного дросселя

50 м экранированный150 м неэкранированный

Макс. длина кабеля до двигателя с  выходным дросселем

150 м экранированный250 м неэкранированный

Поддерживаемые протоколы обмена  данными

  • Industrial Ethernet,
  • ModBus,
  • Industrial  Ethernet ч/з ADSL,
  • Ethernet ч/з GPRS, 
  • Profibus

Климатическое исполнение

УХЛ4

Монтаж силовых и сигнальных кабелей  осуществить в разных лотках, или  в одном лотке с металлической  перегородкой

Информация о работе Общие сведения о насосах