Автор работы: Пользователь скрыл имя, 06 Ноября 2013 в 23:14, курсовая работа
Энтропия - очень "скользкая" термодинамическая функция. Многие о ней слышали, но далеко не все представляют, что это такое. Конечно, можно сказать (как это сделает физик), что изменение энтропии системы при равновесном процессе равно отношению теплоты, сообщенной системе, к абсолютной температуре: dS = dQ / T, что с повышением температуры (неадиабатическим путем) энтропия системы возрастает, что она представляет собой функцию состояния, то есть ее изменение не зависит от формы пути и, следовательно, в замкнутом контуре ее изменение равно нулю и т.д.
1.ВВЕДЕНИЕ ………………………………………………………………………………………… ст.3
2.ЧТО ТАКОЕ ЭНТРОПИЯ …………………………………………………………………… ст.4
3.БИОСИСТЕМЫ И ВТОРОЙ ПРИНЦИП ТЕРМОДИНАМИКИ ………………. ст.6
4.СТАЦИОНАРНОЕ СОСТОЯНИЕ БИОСИСТЕМ ……………………………………. ст.8
5.РОЛЬ ЭНТРОПИИ В БИОСИСТЕМАХ …………………………………………………. ст.10
6.ОСНОВЫ ИНФОРМАЦИОННОГО ОБМЕНА В ЖИВОМ ОРГАНИЗМЕ .. ст.13
7.ЗАКЛЮЧЕНИЕ …………………………………………………………………………………… ст.15
8.СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ …………………………………………. ст.16
Причина устойчивости стационарных состояний была вскрыта Пригожиным. Он доказал, что в стационарном состоянии биосистемы обладают очень интересным свойством. Если система не очень удалена от состояния термодинамического равновесия, член diS / dt в уравнении при стационарном состоянии сохраняет свое положительное значение, но стремится к минимуму, то есть [Г,Р. с. 285-286](2)
Такое нахождение системы в экстремуме, соответствующем минимуму производства энтропии, обеспечивает ей наиболее устойчивое состояние. Важность этого положения ярко обрисовал известный биоэнергетик А. Качальский: "Этот замечательный вывод проливает свет на мудрость живых организмов. Жизнь - это постоянная борьба против тенденции к возрастанию энтропии. Синтез больших, богатых энергией макромолекул, образование клеток с их сложной структурой, развитие организации - все это мощные антиэнтропийные факторы. Но поскольку, согласно второму закону термодинамики, справедливому для всех явлений природы, избежать возрастания энтропии нельзя, живые организмы избрали наименьшее зло - они существуют в стационарных состояниях, для которых характерна минимальная скорость возрастания энтропии". [Г,Р. с. 286](2)
РОЛЬ ЭНТРОПИИ В БИОСИСТЕМАХ
Все сказанное указывает на важную роль энтропии в биосистемах. Однако нужно отметить, что эта термодинамическая функция имеет несколько смысловых значений и не все они в равной мере приложимы к живым организмам. Рассмотрим их последовательно. [Д. с. 436-437](3)
Энтропия как мера рассеяния энергии при необратимых процессах. В этом аспекте данная функция полностью приложима к биосистемам. Чем больше возрастание энтропии при каком-либо процессе, тем больше рассеяние энергии и тем более необратим данный процесс. [Д. с. 437](3)
Энтропия как мера возможности процесса. В этом качестве энтропия выполняет важную роль, и приговор ее непререкаем. Самопроизвольно могут протекать только такие процессы, при которых эта функция или увеличивается (необратимые), или остается постоянной (обратимые). Процессы, при которых энтропия уменьшается, самопроизвольно протекать не могут, то есть термодинамически невозможны. Эта роль энтропии полностью приложима и к биологическим системам. Термодинамический энтропийный критерий и здесь однозначно определяет возможность протекания того или иного процесса. В этой связи утверждение, которое иногда приходится слышать, что ферменты делают возможными реакции, которые в данных условиях при их отсутствии невозможны, следует признать неверным. Ферменты лишь ускоряют во много раз те реакции, которые и без их участия могут протекать, но с очень низкой скоростью[Д. с. 437-438](3)
Однако, говоря о роли энтропии как меры возможности процесса, необходимо отметить, что "мудрость живых систем" проявляется и здесь. Энергетический обмен у них организован таким образом, что они могут обходить энтропийный термодинамический критерий и в них протекают не только возможные, но и невозможные с термодинамической точки зрения реакции. Это все реакции, при которых энтропия уменьшается, а свободная энергия увеличивается, - биосинтез различных веществ, работа систем активного транспорта и т.д. Каким образом это удается делать биологическим объектам? Это оказывается возможным благодаря механизму так называемого энергетического сопряжения. Суть этого сопряжения состоит в том, что возможная с точки зрения энтропийного критерия реакция сопрягается с реакцией термодинамически невозможной и дает для нее энергию . Два условия необходимы для осуществления энергетического сопряжения: 1) свободная энергия, даваемая термодинамически возможной реакцией, должна превышать энергию, потребляемую реакцией термодинамически невозможной, то есть должен быть некоторый избыток энергии с учетом вероятных потерь при ее передаче; ) обе сопрягаемые реакции должны иметь общий компонент. [Д. с. 438](3)
Такими компонентами в биологических системах могут быть фосфат, электрохимический градиент протона и др. [Д. с. 438](3)
Энергетическое сопряжение в биосистемах - это выдающееся изобретение природы. Оно осуществляется обычно при участии структурных элементов клетки. Наиболее ярким примером такого сопряжения являются процессы окислительного и фотосинтетического фосфорилирования, протекающие при участии соответственно сопрягающих митохондриальных и фотосинтетических мембран. Как известно, в ходе этих процессов за счет энергии переноса электронов по дыхательной или фотосинтетической цепи осуществляется синтез богатых энергией молекул АТФ (фосфорилирование АДФ), используемых для совершения самой разнообразной работы. [Д. с. 438-439](3)
Энтропия как мера упорядоченности системы. Мы уже говорили, что энтропия отражает ту часть энергии системы, которая деградировала, то есть равномерно рассеялась в виде тепла. Таким образом, чем меньше порядка в системе, то есть чем меньше градиенты энергии, тем больше ее энтропия. [Д. с. 439](3)
Особенно четко связь энтропии с упорядоченностью системы проявляется в формуле Планка-Больцмана, которая связывает энтропию с термодинамической вероятностью:
S = k ln W,
где S - энтропия, k - постоянная Больцмана, равная 1,38 " 10- 23 Дж " К-1, или 3,31 " 10- 24 энтропийных единиц (1 энтропийная единица равна 1 кал " град-1), и W - термодинамическая вероятность, то есть число способов, которыми достигается данное состояние. Она всегда больше единицы. В общем виде она равна:
где (если речь идет о молекулах) N - общее число молекул, Ni - число молекул в i-м фазовом объеме. [Д. с. 440](3)
Допустим, у нас есть система, состоящая из трех отсеков. В системе находятся девять молекул. Полный беспорядок в такой системе будет тогда, когда молекулы распределены равномерно, то есть в каждом отсеке будет по три молекулы . Термодинамическая вероятность такой системы равна:
Полный порядок в системе наблюдается при нахождении всех девяти молекул в одном из трех отсеков . Термодинамическая вероятность такой системы будет
Таким образом, чем больше упорядоченность в данной системе, тем меньше ее термодинамическая вероятность, и, следовательно, тем меньше энтропия. [Д. с. 441-442](3)
В какой мере энтропия как мера упорядоченности приложима к биосистемам. Ответ на этот вопрос в определенной степени дают расчеты Л.А. Блюменфельда , который вычислил, насколько меняется энтропия при образовании организма человека из элементов, его составляющих (мономеров, полимеров, клеток). Оказалось, что упорядоченность человеческого организма можно оценить приблизительно в 300 энтропийных единиц. Много это или мало? Чтобы ответить на этот вопрос, достаточно сказать, что настолько меняется энтропия стакана воды при ее испарении. С чем связан такой парадокс? Дело в том, что энтропия оценивает только физическую, энергетическую сторону упорядоченности. Она совершенно не затрагивает качественной ее стороны. Уникальность биологической структуры состоит не в том, сколько энергии в ней содержится и насколько изменилась энтропия при ее образовании, а в том, что эта структура имеет качественные особенности, позволяющие ей выполнять вполне определенные биологические функции. Увы, энтропию это вовсе не интересует. Таким образом, использование энтропии как меры упорядоченности в применении к биосистемам лишено смысла. [Д. с. 442](3)
Основы информационного обмена в живом организме
Истоки возникновения активности и самодвижения следует искать в феномене отражения воздействия внешней среды, т.е. в открытых системах. Причиной активности и самодвижения являются отклонения параметров объекта от нормы при его взаимодействии с внешней средой. Именно благодаря отклонению возникает его отражение, информация, обратная связь, которые в конечном итоге формируют контуры циркуляции информации, образуя функциональные системы. Исследования показали, что пространственно-временная структура внешнего макромира через непрерывно повторяющийся ряд воздействий трансформировалась в химический; континуум молекулярного микромира живых существ, способствовала превращению химических структур в структуры функциональные. (http://metdioz.ru)(4)
Закономерности высших уровней развития материи, так или иначе, включают в себя закономерности низших уровней, но отнюдь не сводятся к ним. Поэтому оказалось несостоятельным объяснение всех форм развития (движения) механическими явлениями, а всех закономерностей -физическими или физико-химическими. Наиболее общее содержание эволюции проявляется в целенаправленном накоплении информации и увеличении ее, использования. Информация - это отрицание энтропии; это коммуникация и связь, в процессе которой устраняется неопределенность; это отраженное разнообразие. В соответствии с теорией энтропийной логики, количество информации становится, подобно количеству вещества или энергии, одной из фундаментальных характеристик явлений природы, а энтропия - мерой количества информации. (http://metdioz.ru) (4)
Живая и неживая материя состоят из одних и тех же элементов периодической системы Менделеева. При разграничении живой и неживой материи существенным является характер структуры, но лишь при наличии определенной функции у соответствующей структуры. Только для живой материи возможен переход от жизни к смерти с сохранением существующей структуры, но с прекращением функций, определяющих жизнь. К общим свойствам живого относится способность самовоспроизводства. Однако главной отличительной особенностью является наличие у каждого живого организма индивидуальной информационно-распорядительной структуры, поскольку самовоспроизводство невозможно без передачи по наследству информации и программ развития. (http://metdioz.ru) (4)
В настоящее время общепризнанно, что взаимодействие внешних факторов с живым веществом происходит на клеточном уровне. Минимальный объем информации, необходимый для выполнения всех присущих клетке функций, должен быть не меньше 1023-1025 бит. Но это не соответствует информационным возможностям ядра клетки, которые не превышают 10 10 бит. Парадокс - огромный объем информации, который не может быть размещен в ядре клетки, и глобальная "информированность" каждой клетки обо всем происходящем в организме - заставляет предположить существование и функционирование своеобразных информационных комплексов. А при развитии этой мысли мы приходим к выводу о наличии информационно-распорядительных комплексов биоструктур, биообъекта в целом, ноосферы (биосферы) нашей планеты и так далее во вселенском масштабе. Ответы на вопросы о возможностях и способах внешнего информационного воздействия на биообъекты, и в частности на человека кроются в правильном понимании механизма управления как специфически организованной формы движения материи, механизма реализации программ развития и функционирования организма человека, процесса синтеза информации, иерархии этого процесса. (http://metdioz.ru) (4)
У М.В. Волькенштейна в его книге "Энтропия и информация" есть такие строки:
Энергия - миров царица,
Но черная за нею тень
Непререкаемо влачится,
Уравнивая ночь и день,
Всему уничтожая цену,
Все превращая в дымный мрак_
Ведь энтропия неизменно
Изображалась только так.
Но ныне понято, что тени
Не будет, не было и нет,
Что в смене звездных поколений
Лишь энтропия - жизнь и свет.
Не будем включаться в спор о том, что важнее - энергия или энтропия. Будем считать свою задачу выполненной.
4) http://metdioz.ru - Интернет сайт
Информация о работе Роль энтропии и информации для животного организма